
4/23/2012

1

Scheduler Activations

Slides modified from Raymond Namyst, U. Bordeaux

Learning Outcomes

• An understanding of hybrid approaches 
to thread implementation

• A high-level understanding of scheduler 

activations, and how they overcome the 
limitations of user-level and kernel-level 

threads.

• Thomas Anderson, Brian Bershad, 
Edward Lazowska, and Henry Levy. 

Scheduler Activations: Effective Kernel 

Support for the User-Level management 

of Parallelism. ACM Trans. on 

Computer Systems 10(1), Feburary

1992, pp. 53-79.

User-level Threads

Scheduler

Scheduler SchedulerScheduler

Kernel Mode

User Mode

Process A Process B Process C

User-level Threads

� Fast thread management (creation, deletion, 

switching, synchronisation…)

� Blocking blocks all threads in a process

– Syscalls

– Page faults

� No thread-level parallelism on multiprocessor

Kernel-Level Threads

Scheduler
Kernel Mode

User Mode

Process A Process B Process C



4/23/2012

2

Kernel-level Threads

� Slow thread management (creation, deletion, 

switching, synchronisation…)

• System calls

�Blocking blocks only the appropriate thread in 

a process

� Thread-level parallelism on multiprocessor

Performance

Hybrid Multithreading

Scheduler

Scheduler SchedulerScheduler

Kernel Mode

User Mode

Process A Process B Process C

Hybrid Multithreading

�Can get real thread parallelism on 
multiprocessor

� Blocking still a problem!!!

Scheduler Activations

• First proposed by [Anderson et al. 91]

• Idea: Both schedulers co-operate
• User scheduler uses system calls

• Kernel scheduler uses upcalls!

• Two important concepts 
– Upcalls

• Notify the user-level of kernel scheduling events

– Activations

• A new structure to support upcalls and execution
– approximately a kernel thread

• As many running activations as (allocated) processors

• Kernel controls activation creation and destruction

Scheduler Activations

• Instead of

Kernel Space

User Space

Hardware

syscall

• …rather use the following scheme: 

Kernel Space

User Space

Hardware

I/O request interrupt

upcall upcall

CPU time wasted

CPU used



4/23/2012

3

• New
– Allocated a new virtual CPU
– Can schedule a user-level thread

• Preempted
– Deallocated a virtual CPU

– Can schedule one less thread

• Blocked
– Notifies thread has blocked

– Can schedule another user-level thread

• Unblocked
– Notifies a thread has become runnable

– Must decided to continue current or unblocked thread

Upcalls to User-level 

scheduler
Working principle

• Blocking syscall scenario on 2 processors

Process

User scheduler

Working principle
• Blocking syscall scenario on 2 processors

Process

new

Working principle

• Blocking syscall scenario on 2 processors

Process

new

Working principle
• Blocking syscall scenario on 2 processors

Process

Working principle
• Blocking syscall scenario on 2 processors

Process

Preempt

preempt



4/23/2012

4

Working principle
• Blocking syscall scenario on 2 processors

Process

Working principle
• Blocking syscall scenario on 2 processors

Process

Blocking syscall

Working principle

• Blocking syscall scenario on 2 processors

Process

New + blocked

Working principle
• Blocking syscall scenario on 2 processors

Process

I/O completion

Working principle

• Blocking syscall scenario on 2 processors

Process

Unblocked

Working principle
• Blocking syscall scenario on 2 processors

Process



4/23/2012

5

Scheduler Activations

• Thread management at user-level
– Fast

• Real thread parallelism via activations
– Number of activations (virtual CPU) can equal 

CPUs

• Blocking (syscall or page fault) creates new 
activation
– User-level scheduler can pick new runnable 

thread.

• Fewer stacks in kernel
– Blocked activations + number of virtual CPUs

Performance

Adoption

• Adopters

– BSD “Kernel Scheduled Entities”

• Reverted back to kernel threads

– Variants in Research OSs: K42, Barrelfish

– Digital UNIX

– Solaris

– Mach

– Windows 7

• Linux -> kernel threads


