
1

1

Memory Management

Learning Outcomes

• Appreciate the need for memory management in

operating systems, understand the limits of fixed
memory allocation schemes.

• Understand fragmentation in dynamic memory
allocation, and understand dynamic allocation
approaches.

• Understand how program memory addresses relate to

physical memory addresses, memory management in
base-limit machines, and swapping

• An overview of virtual memory management, including
paging and segmentation.

2

3

Process

• One or more threads of execution

• Resources required for execution

– Memory (RAM)

• Program code (“text”)

• Data (initialised, uninitialised, stack)

• Buffers held in the kernel on behalf of the process

– Others

• CPU time

• Files, disk space, printers, etc.

4

Some Goals of an Operating

System
• Maximise memory utilisation

• Maximise CPU utilization

• Minimise response time

• Prioritise “important” processes

• Note: Conflicting goals ⇒ tradeoffs
– E.g. maximising CPU utilisation (by running

many processes) increases (degrades)
system response time.

5

Memory Management

• Keeps track of what memory is in use and
what memory is free

• Allocates free memory to process when

needed

– And deallocates it when they don’t

• Manages the transfer of memory between

RAM and disk.

6

Memory Hierarchy
• Ideally, programmers

want memory that is

– Fast

– Large

– Nonvolatile

• Not possible

• Memory manager
coordinates how

memory hierarchy is
used.

– Focus usually on

RAM ⇔ Disk

2

7

Memory Management

• Two broad classes of memory
management systems

– Those that transfer processes to and from

disk during execution.

• Called swapping or paging

– Those that don’t

• Simple

• Might find this scheme in an embedded device,

phone, smartcard, or PDA.

8

Basic Memory Management
Monoprogramming without Swapping or Paging

Three simple ways of organizing memory
- an operating system with one user process

9

Monoprogramming

• Okay if

– Only have one thing to do

– Memory available approximately equates to

memory required

• Otherwise,

– Poor CPU utilisation in the presence of I/O

waiting

– Poor memory utilisation with a varied job mix

10

Idea

• Subdivide memory and run more than one
process at once!!!!

– Multiprogramming, Multitasking

11

Modeling Multiprogramming

CPU utilization as a function of number of processes in
memory

Degree of multiprogramming

12

Problem: How to divide memory

• One approach

– divide memory into fixed

equal-sized partitions

– Any process <= partition

size can be loaded into

any partition

Process A

Process B

Process C

Process D

3

13

Simple MM: Fixed, equal-sized

partitions
• Any unused space in the

partition is wasted

– Called internal

fragmentation

• Processes smaller than

main memory, but larger
than a partition cannot

run.

Process A

Process B

Process C

Process D

14

Simple MM: Fixed, variable-sized

partitions

• Multiple Queues:

– Place process in queue for smallest
partition that it fits in.

15

• Issue

– Some partitions may

be idle

• Small jobs available,
but only large partition

free

16

• Single queue, search

for any jobs that fits
• Small jobs in large

partition if necessary

– Increases internal
memory fragmentation

17

Fixed Partition Summary

• Simple

• Easy to implement

• Can result in poor memory utilisation
– Due to internal fragmentation

• Used on OS/360 operating system
(OS/MFT)
– Old mainframe batch system

• Still applicable for simple embedded
systems

18

Dynamic Partitioning

• Partitions are of variable length

• Process is allocated exactly what it needs

– Assume a process knows what it needs

4

21

Dynamic Partitioning

• In previous diagram
– We have 16 meg free in total, but it can’t be used to

run any more processes requiring > 6 meg as it is
fragmented

– Called external fragmentation

• We end up with unusable holes
• Reduce external fragmentation by compaction

– Shuffle memory contents to place all free memory together in
one large block.

– Compaction is possible only if relocation is dynamic, and is done
at execution time.

22

Recap: Fragmentation

• External Fragmentation:

– The space wasted external to the allocated memory

regions.

– Memory space exists to satisfy a request, but it is

unusable as it is not contiguous.

• Internal Fragmentation:

– The space wasted internal to the allocated memory

regions.

– allocated memory may be slightly larger than
requested memory; this size difference is wasted
memory internal to a partition.

23

Dynamic Partition Allocation

Algorithms
• Basic Requirements

– Quickly locate a free partition satisfying the

request

– Minimise external fragmentation

– Efficiently support merging two adjacent free

partitions into a larger partition

24

Classic Approach

• Represent available memory as a linked
list of available “holes”.

– Base, size

– Kept in order of increasing address

• Simplifies merging of adjacent holes into larger
holes.

Address

Size

Link

Address

Size

Link

Address

Size

Link

Address

Size

Link

5

25

Coalescing Free Partitions with Linked

Lists

Four neighbor combinations for the terminating
process X

26

Dynamic Partitioning Placement

Algorithm
• First-fit algorithm

– Scan the list for the first entry that fits
• If greater in size, break it into an allocated and free part

• Intent: Minimise amount of searching performed

– Aims to find a match quickly
– Generally can result in holes at the front end of

memory that must be searched over when trying to
find a free block.

– May have lots of unusable holes at the beginning.
• External fragmentation

– Tends to preserve larger blocks at the end of memory

Address

Size

Link

Address

Size

Link

Address

Size

Link

Address

Size

Link

27

Dynamic Partitioning Placement

Algorithm
• Next-fit

– Like first-fit, except it begins its search from the point
in list where the last request succeeded instead of at
the beginning.

• Spread allocation more uniformly over entire memory

– More often allocates a block of memory at the end of memory
where the largest block is found

• The largest block of memory is broken up into smaller blocks
– May not be able to service larger request as well as first fit.

Address

Size

Link

Address

Size

Link

Address

Size

Link

Address

Size

Link

28

Dynamic Partitioning Placement

Algorithm
• Best-fit algorithm

– Chooses the block that is closest in size to the

request

– Poor performer

• Has to search complete list

– does more work than first- or next-fit

• Since smallest block is chosen for a process, the smallest
amount of external fragmentation is left

– Create lots of unusable holes

Address

Size

Link

Address

Size

Link

Address

Size

Link

Address

Size

Link

29

Dynamic Partitioning Placement

Algorithm
• Worst-fit algorithm

– Chooses the block that is largest in size (worst-fit)

• (whimsical) idea is to leave a usable fragment left over

– Poor performer

• Has to do more work (like best fit) to search complete list

• Does not result in significantly less fragmentation

Address

Size

Link

Address

Size

Link

Address

Size

Link

Address

Size

Link

6

31

Dynamic Partition Allocation

Algorithm
• Summary

– First-fit and next-fit are generally better than the

others and easiest to implement

• Note: Used rarely these days

– Typical in-kernel allocators used are lazy buddy, and

slab allocators

• Might go through these later in extended

• You should be aware of them

– useful as a simple allocator for simple systems

32

Compaction

• We can reduce
external fragmentation

by compaction

– Only if we can relocate
running programs

– Generally requires
hardware support

Process A

Process B

Process C

Process D

Process A

Process B

Process C

Process D

33

Some Remaining Issues with Dynamic

Partitioning

• We have ignored

– Relocation

• How does a process run in
different locations in memory?

– Protection

• How do we prevent processes
interfering with each other

Process A

Process B

Process C

Process D

34

Example Logical Address-Space

Layout
• Logical

addresses refer
to specific
locations within
the program

• Once running,
these address
must refer to real
physical memory

• When are logical
addresses bound
to physical?

0x0000

0xFFFF

35

When are memory

addresses bound?
• Compile/link time

– Compiler/Linker binds the
addresses

– Must know “run” location at
compile time

– Recompile if location changes

• Load time
– Compiler generates relocatable

code

– Loader binds the addresses at
load time

• Run time
– Logical compile-time addresses

translated to physical addresses
by special hardware.

36

Hardware Support for Runtime

Binding and Protection
• For process B to run using logical

addresses

– Need to add an appropriate offset to its

logical addresses

• Achieve relocation

• Protect memory “lower” than B

– Must limit the maximum logical address B
can generate

• Protect memory “higher” than B

Process A

Process B

Process C

Process D

baselimit

0x0000

0xFFFF

7

37

Hardware Support for Relocation and

Limit Registers

38

Base and Limit Registers

• Also called
– Base and bound registers

– Relocation and limit registers

• Base and limit registers
– Restrict and relocate the currently

active process

– Base and limit registers must be
changed at

• Load time

• Relocation (compaction time)

• On a context switch

Process A

Process B

Process C

Process D

baselimit

0x0000

0xFFFF

0x0000

0x1FFF

0x8000

0x9FFF

base=0x8000

limit = 0x2000

39

Base and Limit Registers

• Also called
– Base and bound registers

– Relocation and limit registers

• Base and limit registers
– Restrict and relocate the currently

active process

– Base and limit registers must be
changed at

• Load time

• Relocation (compaction time)

• On a context switch

Process A

Process B

Process C

Process D

base
limit

0x0000

0xFFFF

0x0000

0x2FFF

0x4000

0x6FFF

base=0x4000

limit = 0x3000

40

Base and Limit Registers

• Cons

– Physical memory allocation must still be

contiguous

– The entire process must be in memory

– Do not support partial sharing of address

spaces

41

Timesharing

• Thus far, we have a system suitable for
a batch system
– Limited number of dynamically allocated

processes

• Enough to keep CPU utilised

– Relocated at runtime

– Protected from each other

• But what about timesharing?
– We need more than just a small number of

processes running at once

– Need to support a mix of active and inactive
processes, of varying longevity

Process A

Process B

Process C

Process D

0x0000

0xFFFF

42

Swapping
• A process can be swapped temporarily out of memory to

a backing store, and then brought back into memory for
continued execution.

• Backing store – fast disk large enough to accommodate
copies of all memory images for all users; must provide
direct access to these memory images.

• Can prioritize – lower-priority process is swapped out so
higher-priority process can be loaded and executed.

• Major part of swap time is transfer time; total transfer
time is directly proportional to the amount of memory
swapped.
– slow

8

43

Schematic View of Swapping

44

So far we have assumed a

process is smaller than memory
• What can we do if a process is larger than

main memory?

45

Overlays

• Keep in memory only those instructions
and data that are needed at any given

time.

• Implemented by user, no special support
needed from operating system

• Programming design of overlay structure
is complex

46

Overlays for a Two-Pass Assembler

47

Virtual Memory

• Developed to address the issues identified with
the simple schemes covered thus far.

• Two classic variants
– Paging

– Segmentation

• Paging is now the dominant one of the two

• Some architectures support hybrids of the two
schemes
– E.g. Intel IA-32 (32-bit x86)

48

Virtual Memory - Paging
• Partition physical memory into small

equal sized chunks
– Called frames

• Divide each process’s virtual (logical)
address space into same size chunks
– Called pages
– Virtual memory addresses consist of a

page number and offset within the page

• OS maintains a page table
– contains the frame location for each page

– Used by to translate each virtual address
to physical address

– The relation between
virtual addresses and physical memory
addresses is given by page table

• Process’s physical memory does not
have to be contiguous

9

51

Paging

• No external fragmentation

• Small internal fragmentation (in last page)

• Allows sharing by mapping several pages

to the same frame

• Abstracts physical organisation

– Programmer only deal with virtual addresses

• Minimal support for logical organisation

– Each unit is one or more pages

52

Memory Management Unit

(also called Translation Look-aside Buffer – TLB)

The position and function of the MMU

53

MMU Operation

Internal operation of simplified MMU with 16 4 KB pages

Assume for now that

the page table is

contained wholly in

registers within the

MMU – in practice it

is not

54

Virtual Memory - Segmentation

• Memory-management scheme
that supports user’s view of
memory.

• A program is a collection of
segments. A segment is a
logical unit such as:
– main program, procedure,

function, method, object, local
variables, global variables,
common block, stack, symbol
table, arrays

10

55

Logical View of Segmentation

1

3

2

4

1

4

2

3

user space physical memory space

56

Segmentation Architecture

• Logical address consists of a two tuple: <segment-
number, offset>,
– Addresses identify segment and address with segment

• Segment table – each table entry has:
– base – contains the starting physical address where the

segments reside in memory.

– limit – specifies the length of the segment.

• Segment-table base register (STBR) points to the
segment table’s location in memory.

• Segment-table length register (STLR) indicates number
of segments used by a program;

segment number s is legal if s < STLR.

57

Segmentation Hardware

58

Example of Segmentation

59

Segmentation Architecture

• Protection. With each entry in segment table
associate:
– validation bit = 0 ⇒ illegal segment

– read/write/execute privileges

• Protection bits associated with segments; code
sharing occurs at segment level.

• Since segments vary in length, memory
allocation is a dynamic partition-allocation
problem.

• A segmentation example is shown in the
following diagram

60

Sharing of Segments

11

61

Segmentation Architecture

• Relocation.
– dynamic⇒ by segment table

• Sharing.
– shared segments⇒ same physical backing multiple segments⇒ ideally, same segment number

• Allocation.
– First/next/best fit⇒ external fragmentation

62

Comparison

Comparison of paging and segmentation

