Virtual Memory II
Learning Outcomes

• An understanding of TLB refill:
 – in general,
 – and as implemented on the R300

• An understanding of demand-paged virtual memory in depth, including:
 – Locality and working sets
 – Page replacement algorithms
 – Thrashing
TLB Recap

• Fast associative cache of page table entries
 – Contains a subset of the page table
 – What happens if required entry for translation is not present (a TLB miss)?
TLB Recap

• TLB may or may not be under OS control
 – Hardware-loaded TLB
 • On miss, hardware performs PT lookup and reloads TLB
 • Example: Pentium
 – Software-loaded TLB
 • On miss, hardware generates a TLB miss exception, and exception handler reloads TLB
 • Example: MIPS
Aside: even if filled by software

- TLB still a hardware-based translator
R3000 TLB Handling

- TLB refill is handled by software
 - An exception handler
- TLB refill exceptions accessing kuseg are expected to be frequent
 - CPU optimised for handling kuseg TLB refills by having a special exception handler just for TLB refills
Exception Vectors

<table>
<thead>
<tr>
<th>Program address</th>
<th>“segment”</th>
<th>Physical Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x8000 0000</td>
<td>kseg0</td>
<td>0x0000 0000</td>
<td>TLB miss on kuseg reference only.</td>
</tr>
<tr>
<td>0x8000 0080</td>
<td>kseg0</td>
<td>0x0000 0080</td>
<td>All other exceptions.</td>
</tr>
<tr>
<td>0xbfc0 0100</td>
<td>kseg1</td>
<td>0x1fc0 0100</td>
<td>Uncached alternative kuseg TLB miss entry point (used if SR bit BEV set).</td>
</tr>
<tr>
<td>0xbfc0 0180</td>
<td>kseg1</td>
<td></td>
<td>All alternative for all other exceptions, used if SR bit BEV set.</td>
</tr>
<tr>
<td>0xbfc0 0000</td>
<td>kseg1</td>
<td></td>
<td>“reset exception”.</td>
</tr>
</tbody>
</table>

Table 4.1. Reset and exception vectors (reset and exception) for R30xx family

Special exception vector for kuseg TLB refills.
Special Exception Vector

• Can be optimised for TLB refill only
 – Does not need to check the exception type
 – Does not need to save any registers
 • It uses a specialised assembly routine that only uses k0 and k1.
 – Does not check if PTE exists
 • Assumes virtual linear array – see extended OS notes

• With careful data structure choice, exception handler can be made very fast

• An example routine
 mfc0 k1,C0_CONTEXT
 mfc0 k0,C0_EPC # mfc0 delay
 # slot
 lw k1,0(k1) # may double
 # fault (k0 = orig EPC)
 nop
 mtc0 k1,C0_ENTRYLO
 nop
 tlbwr
 jr k0
 rfe
MIPS VM Related Exceptions

- **TLB refill**
 - Handled via special exception vector
 - Needs to be very fast
- **Others handled by the general exception vector**
 - **TLB Mod**
 - TLB modify exception, attempt to write to a read-only page
 - **TLB Load**
 - Attempt to load from a page with an invalid translation
 - **TLB Store**
 - Attempt to store to a page with an invalid translation
 - **Note:** these can be slower as they are mostly either caused by an error, or non-resident page.
 - We never optimise for errors, and page-loads from disk dominate the fault resolution cost.
Amdahl’s law

• States that overall performance improvement is limited by the fraction of time an enhancement can be used

Law of diminishing returns

\[
\begin{align*}
\text{Time}_{\text{old}} & \quad 50 \quad 50 \\
\text{Time}_{\text{new}} & \quad 50 \quad 25 \\
\Rightarrow & \quad \text{fraction in enhanced mode} = 0.5 \quad (\text{based on old system}) \\
\text{Speedup of enhanced mode} & = 2
\end{align*}
\]
Amdahl’s law

- States that overall performance improvement is limited by the fraction of time an enhancement can be used.

Make the common case fast!
</Intermezzo>
c0 Registers

- **c0_EPC**
 - The address of where to restart after the exception
- **c0_status**
 - Kernel/User Mode bits, Interrupt control
- **c0_cause**
 - What caused the exception
- **c0_badvaddr**
 - The address of the fault
The TLB and EntryHi, EntryLo

Each TLB entry contains
- EntryHi to match page# and ASID
- EntryLo which contains frame# and protection

c0 Registers

- c0_EntryHi
- c0_EntryLo
- c0_Index

Used to read and write individual TLB entries

TLB

<table>
<thead>
<tr>
<th>EntryHi</th>
<th>EntryLo</th>
</tr>
</thead>
<tbody>
<tr>
<td>EntryHi</td>
<td>EntryLo</td>
</tr>
</tbody>
</table>
c0 Registers

<table>
<thead>
<tr>
<th>31</th>
<th>12</th>
<th>11</th>
<th>6</th>
<th>5</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPN</td>
<td>ASID</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EntryHi Register (TLB key fields)

<table>
<thead>
<tr>
<th>31</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFN</td>
<td>N</td>
<td>D</td>
<td>V</td>
<td>G</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EntryLo Register (TLB data fields)

- N = Not cacheable
- D = Dirty = Write protect
- G = Global (ignore ASID in lookup)
- V = valid bit
- 64 TLB entries
- Accessed via software through Cooprocessor 0 registers
 - EntryHi and EntryLo
c0 Index Register

- Used as an index to TLB entries
 - Single TLB entries are manipulated/viewed through EntryHi and EntryLo0
 - Index register specifies which TLB entry to change/view
Special TLB management Instructions

- **TLBR**
 - TLB read
 - EntryHi and EntryLo are loaded from the entry pointer to by the index register.

- **TLBP**
 - TLB probe
 - Set EntryHi to the entry you wish to match, index register is loaded with the index to the matching entry.

- **TLBWR**
 - Write EntryHi and EntryLo to a pseudo-random location in the TLB.

- **TLBWI**
 - Write EntryHi and EntryLo to the location in the TLB pointed to by the Index register.
Cooperator 0 registers on a refill exception

c0.EPC ← PC

c0.cause.ExcCode ← TLBL ; if read fault

c0.cause.ExcCode ← TLBS ; if write fault

c0.BadVaddr ← faulting address

c0.EntryHi.VPN ← faulting address

c0.status ← kernel mode, interrupts disabled.

c0.PC ← 0x8000 0000
Outline of TLB miss handling

• Software does:
 – Look up PTE corresponding to the faulting address
 – If found:
 • load c0_EntryLo with translation
 • load TLB using TLBWR instructions
 • return from exception
 – Else, page fault
• The TLB entry (i.e. c0_EntryLo) can be:
 – created on the fly, or
 – stored completely in the right format in page table
 • more efficient
OS/161 Refill Handler

- After switch to kernel stack, it simply calls the common exception handler
 - Stacks all registers
 - Can (and does) call ‘C’ code
 - Unoptimised
 - Goal is ease of kernel programming, not efficiency
- Does not have a page table
 - It uses the 64 TLB entries and then panics when it runs out.
 - Only support 256K user-level address space
Demand Paging/Segmentation
Demand Paging/Segmentation

• With VM, only parts of the program image need to be resident in memory for execution.
• Can transfer presently unused pages/segments to disk
• Reload non-resident pages/segment on demand.
 – Reload is triggered by a page or segment fault
 – Faulting process is blocked and another scheduled
 – When page/segment is resident, faulting process is restarted
 – May require freeing up memory first
 • Replace current resident page/segment
 • How determine replacement “victim”?
 – If victim is unmodified (“clean”) can simply discard it
 • This is reason for maintaining a “dirty” bit in the PT
• Why does demand paging/segmentation work?
 – Program executes at full speed only when accessing the resident set.
 – TLB misses introduce delays of several microseconds
 – Page/segment faults introduce delays of several milliseconds
 – Why do it?
• Answer
 – Less physical memory required per process
 • Can fit more processes in memory
 • Improved chance of finding a runnable one
 – Principle of locality
Principle of Locality

• An important observation comes from empirical studies of the properties of programs.
 – Programs tend to reuse data and instructions they have used recently.
 – 90/10 rule
 "A program spends 90% of its time in 10% of its code"

• We can exploit this **locality of references**

• An implication of locality is that we can reasonably predict what **instructions** and **data** a program will use in the near future based on its accesses in the recent past.
• **Two different types** of locality have been observed:

 – *Temporal* locality: states that recently accessed items are likely to be accessed in the near future.

 – *Spatial* locality: says that items whose addresses are near one another tend to be referenced close together in time.
Locality In A Memory-Reference Pattern
Working Set

• The pages/segments required by an application in a time window (Δ) is called its memory **working set**.

• Working set is an approximation of a program’s locality
 – if Δ too small will not encompass entire locality.
 – if Δ too large will encompass several localities.
 – if $\Delta = \infty \Rightarrow$ will encompass entire program.
 – Δ’s size is an application specific tradeoff

• System should keep resident at least a process’s working set
 – Process executes while it remains in its working set

• Working set tends to change gradually
 • Get only a few page/segment faults during a time window
 • Possible to make intelligent guesses about which pieces will be needed in the future
 – May be able to pre-fetch page/segments
Thrashing

- CPU utilisation tends to increase with the degree of multiprogramming
 - number of processes in system
- Higher degrees of multiprogramming – less memory available per process
- Some process’s working sets may no longer fit in RAM
 - Implies an increasing page fault rate
- Eventually many processes have insufficient memory
 - Can’t always find a runnable process
 - Decreasing CPU utilisation
 - System become I/O limited
- This is called *thrashing*.
Thrashing

- Why does thrashing occur?
 \[\sum \text{working set sizes} > \text{total physical memory size} \]
Recovery From Thrashing

• In the presence of increasing page fault frequency and decreasing CPU utilisation
 – Suspend a few processes to reduce degree of multiprogramming
 – Resident pages of suspended processes will migrate to backing store
 – More physical memory becomes available
 • Less faults, faster progress for runnable processes
 – Resume suspended processes later when memory pressure eases
Quiz

• how does an IPT work?
 – what is good about it?
 – what is bad about it?

• what is the TLB?
 – what happens on a context switch?

• what is a working set?
• what is thrashing?
What is the difference?

/* reset array */
int array[10000][10000];
int i, j;
for (i = 0; i < 10000; i++) {
 for (j = 0; j < 10000; j++) {
 array[i][j] = 0;
 /* array[j][i] = 0 */
 }
}

Array[a][b]
VM Management Policies
VM Management Policies

• Operation and performance of VM system is dependent on a number of policies:
 – Page table format (may be dictated by hardware)
 • Multi-level
 • Hashed
 – Page size (may be dictated by hardware)
 – Fetch Policy
 – Replacement policy
 – Resident set size
 • Minimum allocation
 • Local versus global allocation
 – Page cleaning policy
 – Degree of multiprogramming
Page Size

Increasing page size

✗ Increases internal fragmentation
 ▪ reduces adaptability to working set size

✓ Decreases number of pages
 ▪ Reduces size of page tables

✓ Increases TLB coverage
 ▪ Reduces number of TLB misses

✗ Increases page fault latency
 ▪ Need to read more from disk before restarting process

✓ Increases swapping I/O throughput
 ▪ Small I/O are dominated by seek/rotation delays

▪ Optimal page size is a (work-load dependent) trade-off.
Working Set Size Generally Increases with Increasing Page Size: True/False?
<table>
<thead>
<tr>
<th>Architecture</th>
<th>Memory Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlas</td>
<td>512 words (48-bit)</td>
</tr>
<tr>
<td>Honeywell/Multics</td>
<td>1K words (36-bit)</td>
</tr>
<tr>
<td>IBM 370/XA</td>
<td>4K bytes</td>
</tr>
<tr>
<td>DEC VAX</td>
<td>512 bytes</td>
</tr>
<tr>
<td>IBM AS/400</td>
<td>512 bytes</td>
</tr>
<tr>
<td>Intel Pentium</td>
<td>4K and 4M bytes</td>
</tr>
<tr>
<td>ARM</td>
<td>4K and 64K bytes</td>
</tr>
<tr>
<td>MIPS R4000</td>
<td>4k – 16M bytes in powers of 4</td>
</tr>
<tr>
<td>DEC Alpha</td>
<td>8K - 4M bytes in powers of 8</td>
</tr>
<tr>
<td>UltraSPARC</td>
<td>8K – 4M bytes in powers of 8</td>
</tr>
<tr>
<td>PowerPC</td>
<td>4K bytes + “blocks”</td>
</tr>
<tr>
<td>Intel IA-64</td>
<td>4K – 256M bytes in powers of 4</td>
</tr>
</tbody>
</table>
Page Size

- Multiple page sizes provide flexibility to optimise the use of the TLB
- Example:
 - Large page sizes can be use for code
 - Small page size for thread stacks
- Most operating systems support only a single page size
 - Dealing with multiple page sizes is hard!
Fetch Policy

- Determines *when* a page should be brought into memory
 - *Demand paging* only loads pages in response to page faults
 - Many page faults when a process first starts
 - *Pre-paging* brings in more pages than needed at the moment
 - Improves I/O performance by reading in larger chunks
 - Pre-fetch when disk is idle
 - Wastes I/O bandwidth if pre-fetched pages aren’t used
 - Especially bad if we eject pages in working set in order to pre-fetch unused pages.
 - Hard to get right in practice.
Page fault on page 14, physical memory full, which page should we evict?
Replacement Policy

• Which page is chosen to be tossed out?
 – Page removed should be the page least likely to be references in the near future
 – Most policies attempt to predict the future behaviour on the basis of past behaviour

• Constraint: locked frames
 – Kernel code
 – Main kernel data structure
 – I/O buffers
 – Performance-critical user-pages (e.g. for DBMS)

• Frame table has a lock bit
Optimal Replacement policy

- Toss the page that won’t be used for the longest time
- Impossible to implement
- Only good as a theoretic reference point:
 - The closer a practical algorithm gets to *optimal*, the better
- Example:
 - Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
 - Four frames
 - How many page faults?
FIFO Replacement Policy

• First-in, first-out: Toss the oldest page
 – Easy to implement
 – Age of a page is isn’t necessarily related to usage

• Example:
 – Reference string: 1,2,3,4,1,2,5,1,2,3,4,5
 – Four frames
 – How many page faults?
 – Three frames?
FIFO Replacement Policy

• First-in, first-out: Toss the oldest page
 – Easy to implement
 – Age of a page is isn’t necessarily related to usage

• Example:
 – Reference string: 1,2,3,4,1,2,5,1,2,3,4,5
 – Four frames
 – How many page faults?
 – Three frames?
Belady’s Anomaly

• For FIFO, more frames does not imply fewer page faults
Least Recently Used (LRU)

• Toss the least recently used page
 – Assumes that page that has not been referenced for a long time is unlikely to be referenced in the near future
 – Will work if locality holds
 – Implementation requires a time stamp to be kept for each page, updated on every reference
 – Impossible to implement efficiently
 – Most practical algorithms are approximations of LRU
Clock Page Replacement

- Clock policy, also called *second chance*
 - Employs a *usage* or *reference* bit in the frame table.
 - Set to *one* when page is used
 - While scanning for a victim, reset all the reference bits
 - Toss the first page with a zero reference bit.
(a) State of buffer just prior to a page replacement

Figure 8.16 Example of Clock Policy Operation
Assume a page fault on page 727

Figure 8.16 Example of Clock Policy Operation
(b) State of buffer just after the next page replacement

Figure 8.16 Example of Clock Policy Operation
Issue

• How do we know when a page is referenced?
• Use the valid bit in the PTE:
 – When a page is mapped (valid bit set), set the reference bit
 – When resetting the reference bit, invalidate the PTE entry
 – On page fault
 • Turn on valid bit in PTE
 • Turn on reference bit
• We thus simulate a reference bit in software
Hardware Reference Bit

State: Page not referenced

<table>
<thead>
<tr>
<th>Frame#</th>
<th>R=0</th>
<th>W</th>
<th>V=1</th>
</tr>
</thead>
</table>

State: Page referenced

| Frame# | R=1 | W | V=1 |

Page Accessed

Ref. bit reset by Clock algorithm
Simulated Reference Bit

State: Page not referenced

| Frame# | R=0 | W | V=0 |

Page fault on access, fault handler sets Ref. and Valid bit.

State: Page referenced

| Frame# | R=1 | W | V=1 |

Uses “spare” bits in page table (ignored by hardware), or bit in frame table

Ref. and valid bit reset by Clock algorithm
Performance

• In terms of selecting the most appropriate replacement, they rank as follows
 1. Optimal
 2. LRU
 3. Clock
 4. FIFO

 Note there are other algorithms (Working Set, WSclock, Ageing, NFU, NRU)
 We don’t expect you to know them in this course
Resident Set Size

• How many frames should each process have?
 – *Fixed Allocation*
 • Gives a process a fixed number of pages within which to execute.
 • When a page fault occurs, one of the pages of that process must be replaced.
 • Achieving high utilisation is an issue.
 – Some processes have high fault rate while others don’t use their allocation.
 – *Variable Allocation*
 • Number of pages allocated to a process varies over the lifetime of the process
Variable Allocation, Global Scope

– Easiest to implement
– Adopted by many operating systems
– Operating system keeps global list of free frames
– Free frame is added to resident set of process when a page fault occurs
– If no free frame, replaces one from any process

• Pro/Cons
 – Automatic balancing across system
 – Does not provide guarantees for important activities
Variable Allocation, Local Scope

- Allocate number of page frames to a new process based on
 - Application type
 - Program request
 - Other criteria (priority)
- When a page fault occurs, select a page from among the resident set of the process that suffers the page fault
- *Re-evaluate allocation from time to time!*
Page-Fault Frequency Scheme

• Establish “acceptable” page-fault rate.
 – If actual rate too low, process loses frame.
 – If actual rate too high, process gains frame.
Cleaning Policy

• Observation
 – Clean pages are much cheaper to replace than dirty pages

• Demand cleaning
 – A page is written out only when it has been selected for replacement
 – High latency between the decision to replace and availability of free frame.

• Precleaning
 – Pages are written out in batches (in the background, the pagedaemon)
 – Increases likelihood of replacing clean frames
 – Overlap I/O with current activity
Load Control (Degree of multiprogramming)

• Determines the number of runnable processes
• Controlled by:
 – Admission control
 • Only let new process’s threads enter *ready* state if enough memory is available
 – Suspension:
 • Move all threads of some process into a special *suspended* state
 • Swap complete process image of suspended process to disk
• Trade-off
 – Too many processes will lead to thrashing
 – Too few will lead to idle CPU
Load Control Considerations

- Can use page fault frequency.