
1

I/O Management

Software

Chapter 5

Learning Outcomes

• An understanding of the structure of I/O related

software, including interrupt handers.

• An appreciation of the issues surrounding long

running interrupt handlers, blocking, and

deferred interrupt handling.

• An understanding of I/O buffering and buffering's

relationship to a producer-consumer problem.

2

3

Operating System Design

Issues
• Efficiency

– Most I/O devices slow compared to main memory

(and the CPU)

• Use of multiprogramming allows for some processes to be
waiting on I/O while another process executes

• Often I/O still cannot keep up with processor speed

• Swapping may used to bring in additional Ready processes

– More I/O operations

• Optimise I/O efficiency – especially Disk &

Network I/O

4

Operating System Design

Issues
• The quest for generality/uniformity:

– Ideally, handle all I/O devices in the same way
• Both in the OS and in user applications

– Problem:
• Diversity of I/O devices

• Especially, different access methods (random access versus
stream based) as well as vastly different data rates.

• Generality often compromises efficiency!

– Hide most of the details of device I/O in lower-level
routines so that processes and upper levels see
devices in general terms such as read, write, open,
close.

5

I/O Software Layers

Layers of the I/O Software System

6

Interrupt Handlers
• Interrupt handlers

– Can execute at (almost) any time

• Raise (complex) concurrency issues in the kernel

• Can propagate to userspace (signals, upcalls), causing similar
issues

• Generally structured so I/O operations block until interrupts
notify them of completion

– kern/dev/lamebus/lhd.c

7

Interrupt Handler Example
static int

lhd_io(struct device *d,

struct uio *uio)

{

...

/* Loop over all the sectors

* we were asked to do. */

for (i=0; i<len; i++) {

/* Wait until nobody else

* is using the device. */

P(lh->lh_clear);

...

/* Tell it what sector we want... */

lhd_wreg(lh, LHD_REG_SECT, sector+i);

/* and start the operation. */

lhd_wreg(lh, LHD_REG_STAT, statval);

/* Now wait until the interrupt

* handler tells us we're done. */

P(lh->lh_done);

/* Get the result value

* saved by the interrupt handler. */

result = lh->lh_result;

}

lhd_iodone(struct lhd_softc *lh, int err)

{

lh->lh_result = err;

V(lh->lh_done);

}

void

lhd_irq(void *vlh)

{

...

val = lhd_rdreg(lh, LHD_REG_STAT);

switch (val & LHD_STATEMASK) {

case LHD_IDLE:

case LHD_WORKING:

break;

case LHD_OK:

case LHD_INVSECT:

case LHD_MEDIA:

lhd_wreg(lh, LHD_REG_STAT, 0);

lhd_iodone(lh,

lhd_code_to_errno(lh, val));

break;

}

}

INT

SLEEP

8

Interrupt Handler Steps
• Save Registers not already saved by hardware interrupt

mechanism

• (Optionally) set up context for interrupt service procedure
– Typically, handler runs in the context of the currently running process

• No expensive context switch

• Set up stack for interrupt service procedure
– Handler usually runs on the kernel stack of current process

• Ack/Mask interrupt controller, re-enable other interrupts
– What does this imply?

9

Interrupt Handler Steps
• Run interrupt service procedure

– Acknowledges interrupt at device level
– Figures out what caused the interrupt

• Received a network packet, disk read finished, UART transmit queue
empty

– If needed, it signals blocked device driver

• In some cases, will have woken up a higher priority
blocked thread

– Choose newly woken thread to schedule next.
– Set up MMU context for process to run next
– What if we are nested?

• Load new/original process' registers
• Re-enable interrupt; Start running the new process

10

Sleeping in Interrupts

• Interrupt generally has no context (runs on current kernel stack)

– Unfair to sleep interrupted process (deadlock possible)

– Where to get context for long running operation?

– What goes into the ready queue?

• What to do?

– Top and Bottom Half

– Linux implements with tasklets and workqueues

– Generically, in-kernel thread(s) handle long running kernel
operations.

Top/Half Bottom Half
• Top Half

– Interrupt handler

– remains short

• Bottom half

– Is preemtable by top half (interrupts)

– performs deferred work (e.g. IP
stack processing)

– Is checked prior to every kernel exit

– signals blocked processes/threads to
continue

• Enables low interrupt latency

• Bottom half can’t block

11

Top Half (Interrupt

Handler)

Bottom Half

Higher Software

Layers

Stack Usage

• Upper software

• Interrupt (interrupts
disabled)

• Deferred processing
(interrupt re-
enabled)

• Interrupt while in
bottom half

12

Kernel Stack

H

HT

HB

HBT

Deferring Work on In-kernel

Threads
• Interrupt

– handler defers work
onto in-kernel thread

• In-kernel thread

handles deferred

work (DW)

– Scheduled normally

– Can block

• Both low interrupt

latency and blocking

operations

13

H

I

D

W

In-kernel thread
stack

Normal
process/thread

stack

14

Device Drivers
• Logical position of device drivers

is shown here

• Drivers (originally) compiled into
the kernel

– Including OS/161

– Device installers were

technicians

– Number and types of devices

rarely changed

• Nowadays they are dynamically
loaded when needed

– Linux modules

– Typical users (device installers)

can’t build kernels

– Number and types vary greatly

• Even while OS is running (e.g

hot-plug USB devices)

15

Device Drivers

• Drivers classified into similar categories
– Block devices and character (stream of data) device

• OS defines a standard (internal) interface to
the different classes of devices
– Device specs often help, e.g. USB

• Device drivers job
– translate request through the device-independent

standard interface (open, close, read, write) into
appropriate sequence of commands (register
manipulations) for the particular hardware

– Initialise the hardware at boot time, and shut it down
cleanly at shutdown

16

Device Driver

• After issuing the command to the device, the
device either
– Completes immediately and the driver simply returns

to the caller

– Or, device must process the request and the driver
usually blocks waiting for an I/O complete interrupt.

• Drivers are re-entrant (or thread-safe) as they
can be called by another process while a
process is already blocked in the driver.
– Re-entrant: Mainly no static (global) non-constant

data.

17

Device-Independent I/O

Software
• There is commonality between drivers of

similar classes

• Divide I/O software into device-dependent
and device-independent I/O software

• Device independent software includes

– Buffer or Buffer-cache management

– Managing access to dedicated devices

– Error reporting

18

Device-Independent I/O Software

(a) Without a standard driver interface

(b) With a standard driver interface

19

Driver ⇔ Kernel Interface
• Major Issue is uniform interfaces to devices and

kernel
– Uniform device interface for kernel code

• Allows different devices to be used the same way

– No need to rewrite file-system to switch between SCSI, IDE or
RAM disk

• Allows internal changes to device driver with fear of breaking
kernel code

– Uniform kernel interface for device code
• Drivers use a defined interface to kernel services (e.g.

kmalloc, install IRQ handler, etc.)

• Allows kernel to evolve without breaking existing drivers

– Together both uniform interfaces avoid a lot of
programming implementing new interfaces

Buffering

20

21

Device-Independent I/O Software

(a) Unbuffered input
(b) Buffering in user space
(c) Single buffering in the kernel followed by copying to user

space
(d) Double buffering in the kernel

22

No Buffering

• Process must read/write a device a
byte/word at a time

– Each individual system call adds significant

overhead

– Process must what until each I/O is complete

• Blocking/interrupt/waking adds to overhead.

• Many short runs of a process is inefficient (poor

CPU cache temporal locality)

23

User-level Buffering
• Process specifies a memory buffer that incoming

data is placed in until it fills

– Filling can be done by interrupt service routine

– Only a single system call, and block/wakeup per data

buffer

• Much more efficient

24

User-level Buffering
• Issues

– What happens if buffer is paged out to disk

• Could lose data while buffer is paged in

• Could lock buffer in memory (needed for DMA), however
many processes doing I/O reduce RAM available for paging.
Can cause deadlock as RAM is limited resource

– Consider write case

• When is buffer available for re-use?

– Either process must block until potential slow device drains

buffer

– or deal with asynchronous signals indicating buffer drained

25

Single Buffer

• Operating system assigns a buffer in kernel’s

memory for an I/O request

• Stream-oriented

– Used a line at time

– User input from a terminal is one line at a time with

carriage return signaling the end of the line

– Output to the terminal is one line at a time

26

Single Buffer

• Block-oriented

– Input transfers made to buffer

– Block moved to user space when needed

– Another block is moved into the buffer

• Read ahead

27

Single Buffer

– User process can process one block of data

while next block is read in

– Swapping can occur since input is taking

place in system memory, not user memory

– Operating system keeps track of assignment

of system buffers to user processes

28

Single Buffer Speed Up

• Assume

– T is transfer time for a block from device

– C is computation time to process incoming block

– M is time to copy kernel buffer to user buffer

• Computation and transfer can be done in parallel

• Speed up with buffering

MCT

CT

+

+

),max(

29

Single Buffer

• What happens if kernel buffer is full, the
user buffer is swapped out, and more data
is received???

– We start to lose characters or drop network

packets

30

Double Buffer

• Use two system buffers instead of one

• A process can transfer data to or from one
buffer while the operating system empties
or fills the other buffer

31

Double Buffer Speed Up

• Computation and Memory copy can be done in

parallel with transfer

• Speed up with double buffering

• Usually M is much less than T giving a

favourable result

),max(MCT

CT

+

+

32

Double Buffer

• May be insufficient for really bursty traffic

– Lots of application writes between long

periods of computation

– Long periods of application computation while

receiving data

– Might want to read-ahead more than a single

block for disk

33

Circular Buffer

• More than two buffers are used

• Each individual buffer is one unit in a circular

buffer

• Used when I/O operation must keep up with

process

34

Important Note

• Notice that buffering, double buffering, and
circular buffering are all

Bounded-Buffer

Producer-Consumer

Problems

35

Is Buffering Always Good?

• Can M be similar or greater than C or T?

),max(MCT

CT

+

+

MCT

CT

+

+

),max(
Single Double

36

Buffering in Fast Networks

• Networking may involve many copies

• Copying reduces performance

– Especially if copy costs are similar to or greater than computation or

transfer costs

• Super-fast networks put significant effort into achieving zero-copy

• Buffering also increases latency

37

I/O Software Summary

Layers of the I/O system and the main
functions of each layer

