
1

I/O Management

Software

Chapter 5



Learning Outcomes

• An understanding of the structure of I/O related 

software, including interrupt handers.

• An appreciation of the issues surrounding long 

running interrupt handlers, blocking, and 

deferred interrupt handling.

• An understanding of I/O buffering and buffering's 

relationship to a producer-consumer problem.
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Operating System Design 

Issues
• Efficiency

– Most I/O devices slow compared to main memory 

(and the CPU)

• Use of multiprogramming allows for some processes to be 
waiting on I/O while another process executes

• Often I/O still cannot keep up with processor speed

• Swapping may used to bring in additional Ready processes 

– More I/O operations

• Optimise I/O efficiency – especially Disk & 

Network I/O
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Operating System Design 

Issues
• The quest for generality/uniformity:

– Ideally, handle all I/O devices in the same way
• Both in the OS and in user applications

– Problem: 
• Diversity of I/O devices

• Especially, different access methods (random access versus 
stream based) as well as vastly different data rates.

• Generality often compromises efficiency!

– Hide most of the details of device I/O in lower-level 
routines so that processes and upper levels see 
devices in general terms such as read, write, open, 
close.
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I/O Software Layers

Layers of the I/O Software System



6

Interrupt Handlers
• Interrupt handlers 

– Can execute at (almost) any time

• Raise (complex)  concurrency issues in the kernel

• Can propagate to userspace (signals, upcalls), causing similar 
issues

• Generally structured so I/O operations block until interrupts 
notify them of completion

– kern/dev/lamebus/lhd.c



7

Interrupt Handler Example
static int 

lhd_io(struct device *d, 

struct uio *uio)

{

...

/* Loop over all the sectors

* we were asked to do. */

for (i=0; i<len; i++) {

/* Wait until nobody else 

* is using the device. */

P(lh->lh_clear);

...

/* Tell it what sector we want... */

lhd_wreg(lh, LHD_REG_SECT, sector+i);

/* and start the operation. */

lhd_wreg(lh, LHD_REG_STAT, statval);

/* Now wait until the interrupt 

* handler tells us we're done. */

P(lh->lh_done);

/* Get the result value 

* saved by the interrupt handler. */

result = lh->lh_result;

}

lhd_iodone(struct lhd_softc *lh, int err)

{

lh->lh_result = err;

V(lh->lh_done);

}

void

lhd_irq(void *vlh)

{

... 

val = lhd_rdreg(lh, LHD_REG_STAT);

switch (val & LHD_STATEMASK) {

case LHD_IDLE:

case LHD_WORKING:

break;

case LHD_OK:

case LHD_INVSECT:

case LHD_MEDIA:

lhd_wreg(lh, LHD_REG_STAT, 0);

lhd_iodone(lh,

lhd_code_to_errno(lh, val));

break;

}

}

INT

SLEEP
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Interrupt Handler Steps
• Save Registers not already saved by hardware interrupt 

mechanism

• (Optionally) set up context for interrupt service procedure
– Typically, handler runs in the context of the currently running process

• No expensive context switch

• Set up stack for interrupt service procedure
– Handler usually runs on the kernel stack of current process

• Ack/Mask interrupt controller, re-enable other interrupts
– What does this imply?
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Interrupt Handler Steps
• Run interrupt service procedure

– Acknowledges interrupt at device level
– Figures out what caused the interrupt

• Received a network packet, disk read finished, UART transmit queue 
empty

– If needed, it signals blocked device driver

• In some cases, will have woken up a higher priority 
blocked thread

– Choose newly woken thread to schedule next.
– Set up MMU context for process to run next
– What if we are nested?

• Load new/original process' registers
• Re-enable interrupt; Start running the new process
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Sleeping in Interrupts

• Interrupt generally has no context (runs on current kernel stack)

– Unfair to sleep interrupted process (deadlock possible)

– Where to get context for long running operation?

– What goes into the ready queue?

• What to do?

– Top and Bottom Half

– Linux implements with tasklets and workqueues

– Generically, in-kernel thread(s) handle long running kernel 
operations.



Top/Half Bottom Half
• Top Half

– Interrupt handler

– remains short

• Bottom half

– Is preemtable by top half (interrupts)

– performs deferred work (e.g. IP 
stack processing)

– Is checked prior to every kernel exit

– signals blocked processes/threads to 
continue

• Enables low interrupt latency

• Bottom half can’t block
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Top Half (Interrupt

Handler)

Bottom Half

Higher Software 

Layers



Stack Usage

• Upper software

• Interrupt (interrupts 
disabled)

• Deferred processing 
(interrupt re-
enabled)

• Interrupt while in 
bottom half
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Kernel Stack
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Deferring Work on In-kernel 

Threads 
• Interrupt

– handler defers work 
onto in-kernel thread

• In-kernel thread 

handles deferred 

work (DW)

– Scheduled normally

– Can block

• Both low interrupt 

latency and blocking 

operations 
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Device Drivers
• Logical position of device drivers 

is shown here

• Drivers (originally) compiled into 
the kernel

– Including OS/161

– Device installers were 

technicians

– Number and types of devices 

rarely changed

• Nowadays they are dynamically 
loaded when needed

– Linux modules

– Typical users (device installers) 

can’t build kernels

– Number and types vary greatly

• Even while OS is running (e.g 

hot-plug USB devices)



15

Device Drivers

• Drivers classified into similar categories
– Block devices and character (stream of data) device

• OS defines a standard (internal) interface to 
the different classes of devices
– Device specs often help, e.g. USB

• Device drivers job
– translate request through the device-independent 

standard interface (open, close, read, write) into 
appropriate sequence of commands (register 
manipulations) for the particular hardware

– Initialise the hardware at boot time, and shut it down 
cleanly at shutdown 
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Device Driver

• After issuing the command to the device, the 
device either
– Completes immediately and the driver simply returns 

to the caller

– Or,  device must process the request and the driver 
usually blocks waiting for an I/O complete interrupt.

• Drivers are re-entrant (or thread-safe) as they 
can be called by another process while a 
process is already blocked in the driver.
– Re-entrant: Mainly no static (global) non-constant 

data.
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Device-Independent I/O 

Software
• There is commonality between drivers of 

similar classes

• Divide I/O software into device-dependent 
and device-independent I/O software

• Device independent software includes

– Buffer or Buffer-cache management

– Managing access to dedicated devices

– Error reporting
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Device-Independent I/O Software 

(a) Without a standard driver interface

(b) With a standard driver interface
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Driver ⇔ Kernel Interface
• Major Issue is uniform interfaces to devices and 

kernel
– Uniform device interface for kernel code

• Allows different devices to be used the same way

– No need to rewrite file-system to switch between SCSI, IDE or 
RAM disk 

• Allows internal changes to device driver with fear of breaking 
kernel code

– Uniform kernel interface for device code
• Drivers use a defined interface to kernel services (e.g. 

kmalloc, install IRQ handler, etc.)

• Allows kernel to evolve without breaking existing drivers

– Together both uniform interfaces avoid a lot of 
programming implementing new interfaces 



Buffering
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Device-Independent I/O Software

(a) Unbuffered input
(b) Buffering in user space
(c) Single buffering in the kernel followed by copying to user 

space
(d) Double buffering in the kernel
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No Buffering

• Process must read/write a device a 
byte/word at a time

– Each individual system call adds significant 

overhead

– Process must what until each I/O is complete

• Blocking/interrupt/waking adds to overhead.

• Many short runs of a process is inefficient (poor 

CPU cache temporal locality)
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User-level Buffering
• Process specifies a memory buffer that incoming 

data is placed in until it fills

– Filling can be done by interrupt service routine

– Only a single system call, and block/wakeup per data 

buffer

• Much more efficient
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User-level Buffering
• Issues

– What happens if buffer is paged out to disk

• Could lose data while buffer is paged in

• Could lock buffer in memory (needed for DMA), however 
many processes doing I/O reduce RAM available for paging. 
Can cause deadlock as RAM is limited resource

– Consider write case

• When is buffer available for re-use?

– Either process must block until potential slow device drains 

buffer

– or deal with asynchronous signals indicating buffer drained 
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Single Buffer

• Operating system assigns a buffer in kernel’s 

memory for an I/O request

• Stream-oriented

– Used a line at time

– User input from a terminal is one line at a time with 

carriage return signaling the end of the line

– Output to the terminal is one line at a time
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Single Buffer

• Block-oriented

– Input transfers made to buffer

– Block moved to user space when needed

– Another block is moved into the buffer

• Read ahead
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Single Buffer

– User process can process one block of data 

while next block is read in

– Swapping can occur since input is taking 

place in system memory, not user memory

– Operating system keeps track of assignment 

of system buffers to user processes
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Single Buffer Speed Up

• Assume 

– T is transfer time for a block from device

– C is computation time to process incoming block

– M is time to copy kernel buffer to user buffer

• Computation and transfer can be done in parallel

• Speed up with buffering

MCT

CT

+

+

),max(
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Single Buffer

• What happens if kernel buffer is full, the 
user buffer is swapped out, and more data 
is received???

– We start to lose characters or drop network 

packets
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Double Buffer

• Use two system buffers instead of one

• A process can transfer data to or from one 
buffer while the operating system empties 
or fills the other buffer
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Double Buffer Speed Up

• Computation and Memory copy can be done in 

parallel with transfer

• Speed up with double buffering

• Usually M is much less than T giving a 

favourable result

),max( MCT

CT

+

+
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Double Buffer

• May be insufficient for really bursty traffic

– Lots of application writes between long 

periods of computation

– Long periods of application computation while 

receiving data

– Might want to read-ahead more than a single 

block for disk
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Circular Buffer

• More than two buffers are used

• Each individual buffer is one unit in a circular 

buffer

• Used when I/O operation must keep up with 

process
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Important Note

• Notice that buffering, double buffering, and 
circular buffering are all

Bounded-Buffer 

Producer-Consumer 

Problems
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Is Buffering Always Good?

• Can M be similar or greater than C or T?

),max( MCT

CT

+

+

MCT

CT

+

+

),max(
Single Double
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Buffering in Fast Networks

• Networking may involve many copies

• Copying reduces performance

– Especially if copy costs are similar to or greater than computation or 

transfer costs

• Super-fast networks put significant effort into achieving zero-copy

• Buffering also increases latency
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I/O Software Summary

Layers of the I/O system and the main 
functions of each layer


