
1

1

Processes and Threads

Implementation

2

Learning Outcomes

• An understanding of the typical implementation

strategies of processes and threads

– Including an appreciation of the trade-offs between

the implementation approaches

• Kernel-threads versus user-level threads

• A detailed understanding of “context switching”

3

Summary: The Process Model

• Multiprogramming of four programs

• Conceptual model of 4 independent, sequential

processes (with a single thread each)

• Only one program active at any instant

Processes

Scheduler
Kernel Mode

User Mode

Process A Process B Process C

Processes

• User-mode

– Processes (programs) scheduled by the kernel

– Isolated from each other

– No concurrency issues between each other

• System-calls transition into and return from the kernel

• Kernel-mode

– Nearly all activities still associated with a process

– Kernel memory shared between all processes

– Concurrency issues exist between processes concurrently

executing in a system call

5 6

Threads
The Thread Model

(a) Three processes each with one thread

(b) One process with three threads

2

7

The Thread Model

• Items shared by all threads in a process

• Items private to each thread

8

The Thread Model

Each thread has its own stack

Memory

Where to Implement Application

Threads?

9

OS

System Libraries

Application

Kernel Mode

User Mode

Device

Device

User-level threads

implemented in a library?

Kernel-level threads

implemented in the OS?

Note: Thread API
similar in both

cases

10

Implementing Threads in User

Space

A user-level threads package

User-level Threads

Scheduler

Scheduler SchedulerScheduler

Kernel Mode

User Mode

Process A Process B Process C

12

User-level Threads
• Implementation at user-level

– User-level Thread Control Block (TCB), ready

queue, blocked queue, and dispatcher

– Kernel has no knowledge of the threads (it

only sees a single process)

– If a thread blocks waiting for a resource held

by another thread, its state is saved and the

dispatcher switches to another ready thread

– Thread management (create, exit, yield, wait)

are implemented in a runtime support library

3

13

User-Level Threads

• Pros
– Thread management and switching at user level is much faster

than doing it in kernel level

• No need to trap (take syscall exception) into kernel and back to
switch

– Dispatcher algorithm can be tuned to the application

• E.g. use priorities

– Can be implemented on any OS (thread or non-thread aware)

– Can easily support massive numbers of threads on a per-
application basis

• Use normal application virtual memory

• Kernel memory more constrained. Difficult to efficiently support
wildly differing numbers of threads for different applications.

14

User-level Threads
• Cons

– Threads have to yield() manually (no timer
interrupt delivery to user-level)

• Co-operative multithreading
– A single poorly design/implemented thread can

monopolise the available CPU time

• There are work-arounds (e.g. a timer signal per
second to enable pre-emptive multithreading), they
are course grain and a kludge.

– Does not take advantage of multiple CPUs (in
reality, we still have a single threaded process
as far as the kernel is concerned)

15

User-Level Threads

• Cons
– If a thread makes a blocking system call (or takes a page fault),

the process (and all the internal threads) blocks

• Can’t overlap I/O with computation

• Can use wrappers as a work around
– Example: wrap the read() call

– Use select() to test if read system call would block

» select() then read()

» Only call read() if it won’t block

» Otherwise schedule another thread

– Wrapper requires 2 system calls instead of one

» Wrappers are needed for environments doing lots of blocking
system calls – exactly when efficiency matters!

16

17

Implementing Threads in the Kernel

A threads package managed by the kernel

Kernel-Level Threads

Scheduler
Kernel Mode

User Mode

Process A Process B Process C

4

19

Kernel Threads

• Threads are implemented in the kernel

– TCBs are stored in the kernel

• A subset of information in a traditional PCB

– The subset related to execution context

• TCBs have a PCB associated with them

– Resources associated with the group of threads (the

process)

– Thread management calls are implemented

as system calls

• E.g. create, wait, exit

20

Kernel Threads

• Cons
– Thread creation and destruction, and blocking

and unblocking threads requires kernel entry
and exit.

• More expensive than user-level equivalent

• Pros
– Preemptive multithreading

– Parallelism
• Can overlap blocking I/O with computation

• Can take advantage of a multiprocessor

21

Multiprogramming Implementation

Skeleton of what lowest level of OS does when an
interrupt occurs – a context switch

Context Switch Terminology

• A context switch can refer to

– A switch between threads

• Involving saving and restoring of state associated
with a thread

– A switch between processes

• Involving the above, plus extra state associated
with a process.

– E.g. memory maps

22

23

Context Switch Occurrence
• A switch between process/threads can happen

any time the OS is invoked
– On a system call

• Mandatory if system call blocks or on exit();

– On an exception
• Mandatory if offender is killed

– On an interrupt
• Triggering a dispatch is the main purpose of the timer

interrupt

A thread switch can happen between any two
instructions

Note instructions do not equal program statements

24

Context Switch

• Context switch must be transparent for

processes/threads

– When dispatched again, process/thread should not

notice that something else was running in the
meantime (except for elapsed time)

⇒OS must save all state that affects the thread

• This state is called the process/thread context

• Switching between process/threads

consequently results in a context switch.

5

25

Simplified

Explicit
Thread
Switch

thread_switch(a,b)

{

thread_switch(a,b)

{

thread_switch(b,a)

{

}

}

}

Thread a Thread b

Assume Kernel-Level Threads

Scheduler
Kernel Mode

User Mode

Process A Process B Process C

27

Example Context Switch

• Running in user mode, SP points to user-
level stack (not shown on slide)

SP

Representation of
Kernel Stack

(Memory)

28

Example Context Switch

• Take an exception, syscall, or interrupt,
and we switch to the kernel stack

SP

29

Example Context Switch

• We push a trapframe on the stack

– Also called exception frame, user-level context….

– Includes the user-level PC and SP

SP

trapframe

30

Example Context Switch

• Call ‘C’ code to process syscall, exception,
or interrupt

– Results in a ‘C’ activation stack building up

SP

trapframe‘C’ activation stack

6

31

Example Context Switch

• The kernel decides to perform a context switch

– It chooses a target thread (or process)

– It pushes remaining kernel context onto the stack

SP

trapframe‘C’ activation stackKernel State

32

Example Context Switch

• Any other existing thread must
– be in kernel mode (on a uni processor),

– and have a similar stack layout to the stack we are
currently using

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

Kernel stacks of other
threads/processes

33

Example Context Switch

• We save the current SP in the PCB (or TCB),

and load the SP of the target thread.

– Thus we have switched contexts

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State
34

Example Context Switch

• Load the target thread’s previous context,
and return to C

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stack

trapframe‘C’ activation stackKernel State

35

Example Context Switch

• The C continues and (in this example)
returns to user mode.

SP

trapframe‘C’ activation stackKernel State

trapframe

trapframe‘C’ activation stackKernel State
36

Example Context Switch

• The user-level context is restored

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

7

37

Example Context Switch

• The user-level SP is restored

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State
38

The Interesting Part of a Thread

Switch
• What does the “push kernel state” part

do???

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

39

Simplified OS/161 thread_switch
static

void

thread_switch(threadstate_t newstate, struct wchan *wc)

{

struct thread *cur, *next;

cur = curthread;

do {

next = threadlist_remhead(&curcpu->c_runqueue);

if (next == NULL) {

cpu_idle();

}

} while (next == NULL);

/* do the switch (in assembler in switch.S) */

switchframe_switch(&cur->t_context, &next->t_context);

}

Lots of code
removed – only

basics of pick
next thread and

run it remain 40

OS/161 switchframe_switch

switchframe_switch:

/*

* a0 contains the address of the switchframe pointer in the old thread.

* a1 contains the address of the switchframe pointer in the new thread.

*

* The switchframe pointer is really the stack pointer. The other

* registers get saved on the stack, namely:

*

* s0-s6, s8

* gp, ra

*

* The order must match <mips/switchframe.h>.

*

* Note that while we'd ordinarily need to save s7 too, because we

* use it to hold curthread saving it would interfere with the way

* curthread is managed by thread.c. So we'll just let thread.c

* manage it.

*/

41

OS/161 switchframe_switch

/* Allocate stack space for saving 10 registers. 10*4 = 40 */

addi sp, sp, -40

/* Save the registers */

sw ra, 36(sp)

sw gp, 32(sp)

sw s8, 28(sp)

sw s6, 24(sp)

sw s5, 20(sp)

sw s4, 16(sp)

sw s3, 12(sp)

sw s2, 8(sp)

sw s1, 4(sp)

sw s0, 0(sp)

/* Store the old stack pointer in the old thread */

sw sp, 0(a0)

Save the registers
that the ‘C’

procedure calling
convention

expects
preserved

42

OS/161 switchframe_switch

/* Get the new stack pointer from the new thread */

lw sp, 0(a1)

nop /* delay slot for load */

/* Now, restore the registers */

lw s0, 0(sp)

lw s1, 4(sp)

lw s2, 8(sp)

lw s3, 12(sp)

lw s4, 16(sp)

lw s5, 20(sp)

lw s6, 24(sp)

lw s8, 28(sp)

lw gp, 32(sp)

lw ra, 36(sp)

nop /* delay slot for load */

8

43

OS/161 switchframe_switch

/* and return. */

j ra

addi sp, sp, 40 /* in delay slot */

44

Revisiting

Thread Switchswitchframe_switch(a,b)

{

switchframe_switch(a,b)

{

switchframe_switch(b,a)

{

}

}

}

Thread a Thread b

