
1

Case study: ext2 FS

The ext2 file system
• Second Extended Filesystem

– The main Linux FS before ext3

– Evolved from Minix filesystem (via “Extended Filesystem”)

• Features

– Block size (1024, 2048, and 4096) configured at FS creation

– inode-based FS

– Performance optimisations to improve locality (from BSD
FFS)

• Main Problem: unclean unmount �e2fsck

– Ext3fs keeps a journal of (meta-data) updates

– Journal is a file where updates are logged

– Compatible with ext2fs

3

Recap: i-nodes

• Each file is represented by an inode on disk

• Inode contains all of a file’s metadata

– Access rights, owner,accounting info

– (partial) block index table of a file

• Each inode has a unique number

– System oriented name

– Try ‘ls –i’ on Unix (Linux)

• Directories map file names to inode numbers

– Map human-oriented to system-oriented names

Recap: i-nodes

5

Ext2 i-nodes

• Mode

– Type

• Regular file or directory

– Access mode

• rwxrwxrwx

• Uid

– User ID

• Gid

– Group ID

mode

uid

gid

atime

ctime

mtime

size

block count

reference count

direct blocks

(12)

single indirect

double indirect

triple indirect

6

Inode Contents

• atime

– Time of last access

• ctime

– Time when file was created

• mtime

– Time when file was last
modified

mode

uid

gid

atime

ctime

mtime

size

block count

reference count

direct blocks

(12)

single indirect

double indirect

triple indirect

7

Inode Contents - Size
• What does ‘size of a file’ really

mean?

– The space consumed on disk?

• With or without the metadata?

– The number of bytes written to the file?

– The highest byte written to the file?

mode

uid

gid

atime

ctime

mtime

size

block count

reference count

direct blocks

(12)

single indirect

double indirect

triple indirect 4 7
8 2

5 1
6 3

File system

0 N

8

Inode Contents - Size
• What does ‘size of a file’ really

mean?

– The space consumed on disk?

• With or without the metadata?

– The number of bytes written to the file?

– The highest byte written to the file?

mode

uid

gid

atime

ctime

mtime

size

block count

reference count

direct blocks

(12)

single indirect

double indirect

triple indirect 7
8

5 1

File system

0 N

9

Inode Contents - Size
• What does ‘size of a file’ really

mean?

– The space consumed on disk?

• With or without the metadata?

– The number of bytes written to the file?

– The highest byte written to the file?

mode

uid

gid

atime

ctime

mtime

size

block count

reference count

direct blocks

(12)

single indirect

double indirect

triple indirect
8

File system

0 N

10

Inode Contents
• Size

– Offset of the highest byte written

• Block count
– Number of disk blocks used by the file.

– Note that number of blocks can be much
less than expected given the file size

• Files can be sparsely populated
– E.g. write(f,“hello”); lseek(f, 1000000);

write(f, “world”);

– Only needs to store the start and end of file,
not all the empty blocks in between.

– Size = 1000005

– Blocks = 2 + overheads

mode

uid

gid

atime

ctime

mtime

size

block count

reference count

direct blocks

(12)

single indirect

double indirect

triple indirect

11

Inode Contents
• Direct Blocks

– Block numbers of first 12 blocks in the

file

– Most files are small

• We can find blocks of file directly from the
inode

mode

uid

gid

atime

ctime

mtime

size

block count

reference count
direct blocks (12)

40,58,26,8,12,

44,62,30,10,42,3,21

single indirect

double indirect

triple indirect

100

3

2

56

0

1

7

11

4

7

63

5

6

Disk

8

9
0
1
2
3
4
5
6
7
8
9

File

10
11

12

Problem

• How do we store files greater than 12
blocks in size?

– Adding significantly more direct entries in the

inode results in many unused entries most of

the time.

13

Inode Contents
•Single Indirect Block

–Block number of a block containing

block numbers

mode

uid

gid

atime

ctime

mtime

size

block count

reference count
direct blocks (12)

40,58,26,8,12,

44,62,30,10,42,3,21

single indirect: 32

double indirect

triple indirect

Disk

100

3

2

SI

56

0

1

7

11

4

7

63

5

6

8

9

28

29

38

61

43

46

12

15

13

17

14

16

0
1
2
3
4
5
6
7
8
9

12
13
14
15
16
17

10

11

14

Single Indirection

• Requires two disk access to read

– One for the indirect block; one for the target block

• Max File Size

– Assume 1Kbyte block size, 4 byte block numbers

12 * 1K + 1K/4 * 1K = 268 KiB

• For large majority of files (< 268 KiB), given the inode,

only one or two further accesses required to read any

block in file.

15

Inode Contents
•Double Indirect Block

–Block number of a block containing

block numbers of blocks containing

block numbers

mode

uid

gid

atime

ctime

mtime

size

block count

reference count
direct blocks (12)

40,58,26,8,12,

44,62,30,10,42,3,21

single indirect: 32

double indirect

triple indirect

16

Inode Contents
•Double Indirect Block

–Block number of a block containing

block numbers of blocks containing

block numbers

•Triple Indirect

–Block number of a block containing

block numbers of blocks containing

block numbers of blocks containing

block numbers ☺

mode

uid

gid

atime

ctime

mtime

size

block count

reference count
direct blocks (12)

40,58,26,8,12,

44,62,30,10,42,3,21

single indirect: 32

double indirect

triple indirect

17

UNIX Inode Block Addressing

Scheme

18

Max File Size

• Assume 4 bytes block numbers and 1K blocks

• The number of addressable blocks

– Direct Blocks = 12

– Single Indirect Blocks = 256

– Double Indirect Blocks = 256 * 256 = 65536

– Triple Indirect Blocks = 256 * 256 * 256 = 16777216

• Max File Size

12 + 256 + 65536 + 16777216 = 16843020 blocks ≈ 16 GB

Where is the data block number

stored?
• Assume 4K blocks, 4 byte block numbers, 12 direct

blocks

• A 1 byte file produced by

– lseek(fd, 1048576, SEEK_SET) /* 1 megabyte */

– write(fd, “x”, 1)

• What if we add

– lseek(fd, 5242880, SEEK_SET) /* 5 megabytes */

– write(fd, “x”, 1)

19

20

Where is the block number is this

tree?

Solution?

Block # range location

0 ---11 Direct blocks

12 --- 1035 (11 + 1024) Single-indirect blocks

1036 --- 1049611 (1035 + 1024

* 1024)

Double-indirect blocks

???? Triple-indirect blocks

File (not to scale)

0 N

Solution

Address = 1048576 ==> block
number=1048576/4096=256

Block number=256 ==> single-indirect
block=256-12=244

23

Where is the block number is this

tree?

244th

entry

Solution

Address = 5242880 ==> block
number=5242880/4096=1280

Block number=1280 ==> double-indirect block
number==(1280-1036)/1024=244/1024=0

Index in the double indirect block=244

25

Where is the block number is this

tree?
0th

entry

244th

entry

26

Some Best and Worst Case

Access Patterns
Assume Inode already in memory

• To read 1 byte

– Best:

• 1 access via direct block

– Worst:

• 4 accesses via the triple indirect block

• To write 1 byte

– Best:

• 1 write via direct block (with no previous content)

– Worst:

• 4 reads (to get previous contents of block via triple indirect) + 1 write (to

write modified block back)

27

Worst Case Access Patterns with

Unallocated Indirect Blocks
• Worst to write 1 byte

– 4 writes (3 indirect blocks; 1 data)

– 1 read, 4 writes (read-write 1 indirect, write 2; write 1 data)

– 2 reads, 3 writes (read 1 indirect, read-write 1 indirect, write 1;
write 1 data)

– 3 reads, 2 writes (read 2, read-write 1; write 1 data)

• Worst to read 1 byte

– If reading writes a zero-filled block on disk

– Worst case is same as write 1 byte

– If not, worst-case depends on how deep is the current indirect
block tree.

28

Inode Summary

•The inode contains the on disk data associated with a file
–Contains mode, owner, and other bookkeeping

–Efficient random and sequential access via indexed allocation

–Small files (the majority of files) require only a single access

–Larger files require progressively more disk accesses for random
access
•Sequential access is still efficient

–Can support really large files via increasing levels of indirection

29

Where/How are Inodes Stored

• System V Disk Layout (s5fs)

– Boot Block

• contain code to bootstrap the OS

– Super Block

• Contains attributes of the file system itself

• e.g. size, number of inodes, start block of inode array, start of data block
area, free inode list, free data block list

– Inode Array

– Data blocks

Boot

Block

Super

Block

Inode

Array
Data Blocks

30

Some problems with s5fs

• Inodes at start of disk; data blocks end

– Long seek times

• Must read inode before reading data blocks

• Only one superblock

– Corrupt the superblock and entire file system is lost

• Block allocation was suboptimal

– Consecutive free block list created at FS format time

• Allocation and de-allocation eventually randomises the list resulting in
random allocation

• Inodes also allocated randomly

– Directory listing resulted in random inode access patterns

31

Berkeley Fast Filesystem (FFS)

•Historically followed s5fs

–Addressed many limitations with s5fs

–ext2fs mostly similar

32

Layout of an Ext2 FS

•Partition:

–Reserved boot block,

–Collection of equally sized block groups

–All block groups have the same structure

Boot

Block

Block Group

0
….

Block Group

n

33

Layout of a Block Group

•Replicated super block
–For e2fsck

•Group descriptors

•Bitmaps identify used inodes/blocks

•All block groups have the same number of data blocks

•Advantages of this structure:
–Replication simplifies recovery

–Proximity of inode tables and data blocks (reduces seek time)

Super

Block

Group

Descrip-

tors

Data

Block

Bitmap

Inode

Bitmap

Inode

Table
Data blocks

1 blk n blks 1 blk 1 blk m blks k blks

34

Superblocks

•Size of the file system, block size and similar
parameters

•Overall free inode and block counters

•Data indicating whether file system check is
needed:
–Uncleanly unmounted

–Inconsistency

–Certain number of mounts since last check

–Certain time expired since last check

•Replicated to provide redundancy to aid
recoverability

35

Group Descriptors

•Location of the bitmaps

•Counter for free blocks and inodes in this
group

•Number of directories in the group

36

Performance considerations

•EXT2 optimisations

– Block groups cluster related inodes and data blocks

–Pre-allocation of blocks on write (up to 8 blocks)

•8 bits in bit tables

•Better contiguity when there are concurrent writes

–Aim to store files within a directory in the same group

37

Thus far…

•Inodes representing files laid out on disk.

•Inodes are referred to by number!!!

–How do users name files? By number?

38

Ext2fs Directories

•Directories are files of a special type
–Consider it a file of special format, managed by the kernel, that uses
most of the same machinery to implement it
•Inodes, etc…

•Directories translate names to inode numbers

•Directory entries are of variable length

•Entries can be deleted in place
–inode = 0

–Add to length of previous entry

–use null terminated strings for names

inode rec_len name_len type name…

39

Ext2fs Directories

•“f1” = inode 7

•“file2” = inode 43

•“f3” = inode 85

7

12

2

‘f’ ‘1’ 0 0

43

16

5

‘f’ ‘i’ ‘l’ ‘e’

‘2’ 0 0 0

85

12

2

‘f’ ‘3’ 0 0

Inode No

Rec Length

Name Length

Name

0

40

Hard links

•Note that inodes
can have more than
one name

–Called a Hard Link

–Inode (file) 7 has three

names

•“f1” = inode 7

•“file2” = inode 7

•“f3” = inode 7

7

12

2

‘f’ ‘1’ 0 0

7

16

5

‘f’ ‘i’ ‘l’ ‘e’

‘2’ 0 0 0

7

12

2

‘f’ ‘3’ 0 0

Inode No

Rec Length

Name Length

Name

0

41

Inode Contents
•We can have many names for the same inode.

•When we delete a file by name, i.e. remove the
directory entry (link), how does the file system
know when to delete the underlying inode?

–Keep a reference count in the inode

•Adding a name (directory entry) increments the count

•Removing a name decrements the count

•If the reference count == 0, then we have no names for the

inode (it is unreachable), we can delete the inode (underlying

file or directory)

mode

uid

gid

atime

ctime

mtime

size

block count

reference count
direct blocks (12)

40,58,26,8,12,

44,62,30,10,42,3,21

single indirect: 32

double indirect

triple indirect

Hard links

(a) Situation prior to linking

(b) After the link is created

(c)After the original owner removes the file

Symbolic links

• A symbolic link is a file that contains a
reference to another file or directory

– Has its own inode and data block, which

contains a path to the target file

– Marked by a special file attribute

– Transparent for some operations

– Can point across FS boundaries

44

Ext2fs Directories

•Deleting a filename

–rm file2

7

12

2

‘f’ ‘1’ 0 0

7

16

5

‘f’ ‘i’ ‘l’ ‘e’

‘2’ 0 0 0

7

12

2

‘f’ ‘3’ 0 0

Inode No

Rec Length

Name Length

Name

0

45

Ext2fs Directories

•Deleting a filename

–rm file2

•Adjust the record

length to skip to next

valid entry

7

32

2

‘f’ ‘1’ 0 0

7

12

2

‘f’ ‘3’ 0 0

Inode No

Rec Length

Name Length

Name

0

FS reliability

• Disk writes are buffered in RAM

– OS crash or power outage ==> lost data

– Commit writes to disk periodically (e.g., every

30 sec)

– Use the sync command to force a FS flush

• FS operations are non-atomic

– Incomplete transaction can leave the FS in an

inconsistent state

FS reliability

2

3 1

dir entries i-nodes data blocks

• Example: deleting a file

1.Remove the directory entry

2.Mark the i-node as free

3.Mark disk blocks as free

FS reliability

2

3 1

dir entries i-nodes data blocks

• Example: deleting a file

1.Remove the directory entry--> crash

2.Mark the i-node as free

3.Mark disk blocks as free

The i-node and data blocks are lost

FS reliability

2

3 1

dir entries i-nodes data blocks

• Example: deleting a file

1.Mark the i-node as free --> crash

2.Remove the directory entry

3.Mark disk blocks as free

The dir entry points to the wrong file

FS reliability

2

3 1

dir entries i-nodes data blocks

• Example: deleting a file

1.Mark disk blocks as free --> crash

2.Remove the directory entry

3.Mark the i-node as free

The file randomly shares disk blocks with other files

FS reliability

• e2fsck

– Scans the disk after an unclean shutdown and

attempts to restore FS invariants

• Journaling file systems

– Keep a journal of FS updates

– Before performing an atomic update sequence,

– write it to the journal

– Replay the last journal entries upon an unclean

shutdown

– Example: ext3fs

