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I/O Management

Intro

Chapter 5



Learning Outcomes

• A high-level understanding of the 
properties of a variety of I/O devices.

• An understanding of methods of 
interacting with I/O devices.
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I/O Devices

• There exists a large variety of I/O devices:

– Many of them with different properties

– They seem to require different interfaces to 

manipulate and manage them

• We don’t want a new interface for every device

• Diverse, but similar interfaces leads to code 

duplication

• Challenge:

– Uniform and efficient approach to I/O 
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Categories of I/O Devices (by usage)

• Human interface

– Used to communicate with the user

• Limited by human speed or perception

– Printers, Video Display, Keyboard, Mouse

• Machine interface

– Used to communicate with electronic equipment

• Latency sensitive

– Disk and tape drives, Sensors, Controllers, Actuators

• Communication

– Used to communicate with remote devices
• Latency or throughput sensitive

– Ethernet, Modems, Wireless
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I/O Device Handling

• Data rate

– May be differences of several orders of 

magnitude between the data transfer rates

– Example: Assume 1000 cycles/byte I/O

• Keyboard needs 10 KHz processor to keep up

• Gigabit Ethernet needs 100 GHz processor…..
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Sample Data Rates

USB 3.0 625 MB/s (5 Gb/s)
Thunderbolt 2.5GB/sec (20 Gb/s)
PCIe v3.0 x16 16GB/s 
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I/O Device Handling Considerations

• Complexity of control

• Unit of transfer
– Data may be transferred as a stream of bytes for a 

terminal or in larger blocks for a disk

• Data representation
– Encoding schemes

• Error conditions
– Devices respond to errors differently

• lp0: printer on fire!

– Expected error rate also differs
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I/O Device Handling Considerations

• Layering
– Need to be both general and specific, e.g.

– Devices that are the same, but aren’t the 
same

• Hard-disk, USB disk, RAM disk

– Interaction of layers
• Swap partition and data on same disk

• Two mice

– Priority
• Keyboard, disk, network
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Accessing I/O Controllers

a) Separate I/O and memory space
– I/O controller registers appear as I/O ports 

– Accessed with special I/O instructions

b) Memory-mapped I/O
– Controller registers appear as memory

– Use normal load/store instructions to access

c) Hybrid
– x86 has both ports and memory mapped I/O 



Port Access Example (x86)
static inline void outb(uint16_t port, uint8_t val)

{

asm volatile ( "outb %0, %1" : : "a"(val), "Nd"(port) );

}

static inline uint8_t inb(uint16_t port)

{

uint8_t ret;

asm volatile ( "inb %1, %0" : "=a"(ret): "Nd"(port) );

return ret;

}

uint16_t port = 0x378; /* assign port number */

input = inb(port);     /* read 8-bits from port */

outb(port, output);    /* write 8-bits to port */
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Memory Mapped I/O

#define DEV_ADDR 0x12345678      /* address in memory */

volatile uint32_t *dev_reg; /* type of register – 32-bit */

dev_reg = (uint32_t *) DEV_ADDR; /* init pointer to device reg */

input = *dev_reg;        /* read device register */

*dev_reg = output;       /* write device register */

while (*dev_reg == 0) {} /* spin waiting, need “volatile” */
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Interrupts

• Devices connected to an Interrupt Controller via 
lines on an I/O bus (e.g. PCI)

• Interrupt Controller signals interrupt to CPU and 
is eventually acknowledged. 

• Exact details are architecture specific.



I/O Interaction
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• Also called polling, or busy 
waiting

• I/O module (controller) performs 
the action, not the processor

• Sets appropriate bits in the I/O 
status register

• No interrupts occur

• Processor checks status until 
operation is complete
– Wastes CPU cycles

Programmed I/O



Sample Programmed I/O

volatile struct {

uint8_t wstatus;

uint8_t rstatus;

char outreg;

char inreg;

} * dev = 0x12345678;

void write_buf(char *buf, int n) {

int i = 0;

while (i < n) {

while (dev->wstatus != READY) {}; /* busy wait */

dev->outreg = buf[i];

i++;

}

}

void read_char(char *buf) {

while (dev->rstatus != READY) {}; /* busy wait */

*buf = dev->inreg;

}
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Interrupt-Driven I/O

• Processor is interrupted when I/O 

module (controller) ready to 

exchange data

• Processor is free to do other work

• No needless waiting

• Consumes a lot of processor time 

because every word read or 

written passes through the 

processor



Sample Interrupt Driven I/O

int cur_count;

int out_count;

char * outbuf;

semaphore_t *io_wait;

void write_buf(char *buf, int n) {

cur_count = 0;

out_count = n;

outbuf = buf;

dev->outreg = outbuf[cur_count];

cur_count++;

dev->wstatus = START;

P(io_wait)

}

interrupt_handler ()

{

if (cur_count < out_count) {

dev->outreg = outbuf[cur_count];

cur_count++;

dev->wstatus = START;

}

else {

V(io_wait);

}
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Direct Memory Access
• Transfers data directly between Memory and Device

• CPU not needed for copying

CPU Memory Device

CPU Memory Device

DMA

Controller

DMA
Controller

DMA 

Controller in 

Device
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Direct Memory Access

• Transfers a block of data 
directly to or from memory

• An interrupt is sent when 
the task is complete

• The processor is only 
involved at the beginning 
and end of the transfer



Sample Interrupt Driven DMA I/O

volatile struct {

uint8_t wstatus;

uint8_t rstatus;

char outreg;

char inreg;

uint32_t dma_addr;

uint32_t dma_size; 

} * dev = 0x12345678;

semaphore_t *io_wait;

void write_buf(char *buf, int n) {

dev->dma_addr = buf;

dev->dma_size = n;

dev->wstatus = START_DMA;

P(io_wait)

}

interrupt_handler ()

{

V(io_wait);

}
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DMA Considerations
� Reduces number of interrupts

– Less (expensive) context switches or kernel entry-exits

� Requires contiguous regions (buffers)

– Copying if not contiguous

– Some hardware supports “Scatter-gather”
• E.g. network controller add headers to start of data

• Synchronous

– I/O occurs when we request it

– Can allocate/create buffer in advance (or wait for memory)

• Asynchronous

– I/O occurs without our direct request (e.g. incoming network packets)

– Need to allocate free buffers in advance
• how many?

• too few, data is “dropped”; too many, impact application performance.


