Chapter 6

Deadlocks

6.1. Resources

6.2. Introduction to deadlocks

6.3. The ostrich algorithm

6.6. Deadlock prevention

6.4. Deadlock detection and recovery
6.5. Deadlock avoidance

6.7. Other issues

1 @ UNSW

Learning Outcomes

* Understand what deadlock is and how it can occur when
giving mutually exclusive access to multiple resources.

* Understand several approaches to mitigating the issue of

deadlock in operating systems.

* Including deadlock prevention, detection and recovery, and deadlock
avoidance.

2 @ UNSW

Resources

* Examples of computer resources
* printers
* tape drives
* Tables in a database
* Processes need access to resources in reasonable order
* Preemptable resources
* can be taken away from a process with no ill effects
* Nonpreemptable resources
« will cause the process to fail if taken away

3 @ UNSW

Resources & Deadlocks

* Suppose a process holds resource A and requests
resource B
* at same time another process holds B and requests A
* both are blocked and remain so - Deadlocked
* Deadlocks occur when ...

* processes are granted exclusive access to devices, locks, tables,
etc..

« we refer to these entities generally as resources

4 @ UNSW

Resource Access

* Sequence of events required to use a resource
1. request the resource
2. usetheresource
3. release the resource

* Must wait if request is denied
¢ requesting process may be blocked
¢ may fail with error code

Two example resource usage patterns

semaphore res_1, res_2; semaphore res_1, res_2;

void proc A() { void proc A() {
down (&res_1) ; down (&res_1) ;
down (&res_2) ; down (&res_2) ;
use_both_res() ; use_both_res();
up (&res_2); up (&res_2) ;

up (&res_1) ;
} }

void proc_B() {

up (&res_1) ;

void proc B() {
down (&res_1) ; down (&res_2) ;
down (&res_2) ; down (&res_1) ;
use_both_res() ; use_both_res() ;
up (&res_2); up (&res_1) ;

up (&res_1) ; up (&res_2) ;

Introduction to Deadlocks Four Conditions for Deadlock
1 Mutual exclusion condition
« Formal definition : each resource assigned to 1 process or is available
A set of processes is deadlocked if each process in the set is waiting > Hold and wait condition
for an event that only another process in the set can cause . process holding resources can request additional
* Usually the event is release of a currently held resource s No preemption condition
*None of the processes can previously granted resources cannot be forcibly taken
*run away
« release resources s Circular wait condition
* be awakened e must be a circular chain of 2 or more processes
e each is waiting for resource held by next member of the
chain
7 Fusw g FUNSW
8
Deadlock Modeling Deadlock Modeling
A B c
Request R Request S Request T
)) Request S Request T Request R
*Modeled with directed graphs Roead Roesse? e
(@) (b) (c)
® HEE 000 000 0006
o I I I
5. Brequests T
Cemeat REE REM FEO
(@ (O] U] @
®
(a) (b)
®E O
* resource R assigned to process A
* process B is requesting/waiting for resource S
* process C and D are in deadlock over resources T and U ®
5 g UNSW How deadlock occurs 10 NSW
9 10
Deadlock Modeling
Deadlock

1. Arequests R
2. Crequests T
3. Arequests S
4. Crequests R
5. Areleases R
6. Areleases S
no deadlock

(k)

Strategies for dealing with Deadlocks
1 just ignore the problem altogether
2 prevention
. negating one of the four necessary conditions
3 detection and recovery
a dynamic avoidance
careful resource allocation

How deadlock can be avoided SW

11 12

Approach 1: The Ostrich Algorithm

* Pretend there is no problem

*Reasonable if
« deadlocks occur very rarely
« cost of prevention is high
« Example of “cost”, only one process runs at a time
* UNIX and Windows takes this approach for some of
the more complex resource relationships they
manage

*It’s a trade off between
* Convenience (engineering approach)
* Correctness (mathematical approach)

Approach 2: Deadlock Prevention

* Resource allocation rules prevent deadlock by prevent one
of the four conditions required for deadlock from occurring
* Mutual exclusion
* Hold and wait
* No preemption
« Circular Wait

13 @ UNSW 14 @ UNSW
13 14
Approach 2 Attacking the Hold and Wait Condition
Deadlock Prevention
Attacking the Mutual Exclusion Condition * Require processes to request resources before starting
* a process never has to wait for what it needs
* Not feasible in general
« Some devices/resource are intrinsically not shareable. . Issues
* may not know required resources at start of run
* = not always possible
« also ties up resources other processes could be using
* Variations:
* process must give up all resources if it would block holding a resource
 then request all immediately needed
* prone to livelock
15 @ UNSW 16 @ UNSW
15 16
Livelock Deadlock example
« Livelocked processes are not blocked, change state regularly, void proc_AQ) { void proc_B() {
but never make progress. lock_acquire(&res_1); lock_acquire(&res_2);
. . . lock i & 2); lock i & 1);
* Example: Two people passing each other in a corridor that oc ;aigu”e('_ﬁes_) oc ;ai:u”e('jes—)
attempt to step out of each other’s way in the same use_both_res(); use_both_res();
direction, indefinitely. lock_release(&res_2); lock_release(&res_1);
« Both ar:e actively changing state lock_release(&res_1); lock_release(&res_2);
* Both never pass each other. ¥ ¥
17 B UNsw 18 Busw
17 18

Livelock example Attacking the No Preemption Condition
void proc_A() { void proc_B() {
lock_acquire(&res_1); lock_acquire(&res_2);
while(try_lock(&res_2) == FAIL) { while(try_lock(&res_1) == FAIL) { « This is not a viable option
lock_release(&res_1); lock_release(&res_2);
wait_fixed_time(); wait_fixed_time(); * Consider a process given the printer
lock_acquire(&res_1); lock_acquire(&res_2); * halfway through its job
} } * now forcibly take away printer
use_both_res(); use_both_res(); o U
lock_release(&res_2); lock_release(&res_1);
lock_release(&res_1); lock_release(&res_2);
} }
19 HuNsw
19 20

Attacking the Circular Wait Condition)) _ .
Attacking the Circular Wait Condition

e *The displayed deadlock
1. Imagesetter cannot habpen
2. Scanner : ppen) . .
3. Plotter I Arequires 1f |_t must acquire
4T i it before acquiring 2
;. CalgT:{ rIVZ y * Note: If B has 1, all higher
5. orm.arive numbered resources must be
free or held by processes who
(a) (W])
doesn’t need 1 A B
*Resources ordering is a
common technique in

* Numerically ordered resources

practice!!l!l

21 @U[}QW 22 @UWN§W

21 22
Example Summary of approaches to deadlock prevention
Condition Approach
. . . . * Mutual Exclusion * Not feasible
* Hold and Wait * Request resources initially
* Take resources away
* No Preemption * Order resources
« Circular Wait
A B
23 BUNsw

23 24

Approach 3: Detection and Recovery

* Need a method to determine if a system is deadlocked.

* Assuming deadlocked is detected, we need a method of
recovery to restore progress to the system.

Approach 3
Detection with One Resource of Each Type

i
©~I<—®—>I—>(’T) ®—>EI—>

.L_T

* Note the resource ownership and requests
* A cycle can be found within the graph, denoting deadlock

5 B UNSW 26 B UNSW
25 26
_)) Detection with Multiple Resources of Each Type
What about resources with multiple units?
* Some examples of multi-unit resources Resources in existence Resources available
* RAM (E{E, By . E) (Aj Ay Ay AL
* Blocks on a hard disk drive
« Slots in a buffer Current allocation matrix Request matrix
* We need an approach for dealing with resources that consist Cy Gy ©Cyy -~~~ Gy Ry Ry, Ry -0 Ry
of more than a single unit. 21 G G~ Cop 21 Rz Ry w0 Roy
C C.m C~n2 C~n3 e C;\m R.m Rz R~ Rim
Row n is current allocation Row 2 is what process 2 needs
to process n
Data structures needed by deadlock detection algorithm
27 B UNSW 28 UNSW
27 28

Note the following invariant

Sum of current resource allocation + resources available =
resources that exist

Zn:Cl.jJrAj :E].

Detection with Multiple Resources of Each Type

% %
@ & < & S
& & & Q§ & <& &
/@Qe o ra°° &L

6\%
Qg
«%92 & ra*’ &

E=(4 2 3 1) A=(2 1 0 0)

Current allocation matrix Request matrix
0010 2001

c=|2 001 R=(1 0 1 0
01 20 2100

An example for the deadlock detection algorithm

29

30

Detection Algorithm

1. Look foran unmarked process Pj, for which the i-th row
of Ris less than or equal to A

2. Iffound, add the i-th row of C to A, and mark Pi. Go to
step1
3. If nosuch process exists, terminate.

Example Deadlock Detection

Remaining processes are deadlocked E=(4 2 31 A=2 1 0 0)
0 0 0 2 0 01
C=|2 0 0 1 R= 010
0 2 0 21 00
31 i UNSW 32 o UNSW
31 32
Example Deadlock Detection Example Deadlock Detection
E=(4 2 3 1) A=2 1 0 0) E=(4 2 3 1) A=2 1 0 0)
00 0 2 0 1 0 0 0 2 0 01
C=(2 0 0 1 R=|1 0 0 c=|2 0 0 1 R=|1 01 0
01 2 0 s (2100 01 2 0 s (2100
33 I UNSW 3 B UNSW
33 34
Example Deadlock Detection Example Deadlock Detection
E=(4 2 3 1) A=2 2 2 0) E=(4 2 3 1) A=(2 2 2 0)
00 0 2 0 01 00 0 2 01
C=[2 0 0 R=[1 01 0 c=2 0 0 1| I 10
m=) (001 20 2100) (0 0 2100
35 B UNSW 36 FUNSW

35

36

Example Deadlock Detection

Example Deadlock Detection

E=(4 2 3 1) A=@4 2 2 1) E=(4 2 3 1) A=4 2 2 1)
00 0 2 0 1 0010 2 0 01
e==c=(2 0 0 || mmmmEp1 0 1 0 ==r=(2 0 0 R=1 01 0
=) 0 2 0 2 00 =) 0 2 0 21 00
37 B UNSW 38 s UNSW
37 38
Example Deadlock Detection Example Deadlock Detection
E=(4 2 3 1) A=@4 2 2 1) E=(4 2 3 1) A=@4 2 3 1)
001 0) mmmEp2 0 0 I =) (0010 200 1
=r=2 0 0 R=[1 01 0 E=C=2 0 0 1 R=[1 010
=) 0 2 0 21 00 =) 0 2 0 21 00
39 B UNSW a0 BuNsw
39 40
Example Deadlock Detection Example 2: Deadlock Detection
* Algorithm terminates with no unmarked processes * Suppose, P3 needs a CD-ROM as well as 2 Tapes and a
 We have no dead lock Plotter
E=(4 2 3 1) A=2 1 0 0)
00 0 2 0 01
Cc=|2 0 0 R=[1 0 0
0 0 21 01
a1 Funsw a2 Busw
42

41

Recovery from Deadlock

* Recovery through preemption
* take a resource from some other process
 depends on nature of the resource

* Recovery through rollback
« checkpoint a process periodically
« use this saved state
« restart the process if it is found deadlocked
* No guarantee is won’t deadlock again

Recovery from Deadlock

* Recovery through killing processes
« crudest but simplest way to break a deadlock
« kill one of the processes in the deadlock cycle
« the other processes get its resources
* choose process that can be rerun from the beginning

43 @ UNSW 44 @ UNSW
43 44
Deadlock Avoidance
Approach 4))
. Resource Trajectories
Deadlock Avoidance
* Instead of detecting deadlock, can we simply avoid it? B © u (Both processes
* YES, but only if enough information is available in advance. print finished)
* Maximum number of each resource required rimet lg
Iz
le
| ,
Plotter s T
r 1
Tt
1
1
1
b = A
p a Ih o Is s
Printer <=——
—~—— Plotter
Two process resource trajectories
45 @ UNSW 46 @ UNSW
45 46
Deadlock Avoidance
. . Safe and Unsafe States
Resource Trajectories
B o u (Both o * A state is safe if
) ?in(isﬁed)p ocesses * The system is not deadlocked
Printef ¢ « There exists a scheduling order that results in every process running
to completion, even if they all request their maximum resources
lz immediately
le
t —d
Plotter s . I
- Unsafe State
s
i
1
b = A
p a Ih o Is s
Printer <=——
—~—— Plotter
Two process resource trajectories
a7 Funsw ag Funsw
47 48

Safe and Unsafe States Safe and Unsafe States

Note: We have 10 units of the A requests one extra unit resulting in (b)

resource
Has Max Has Max Has Max Has Max Has Max Has Max Has Max Has Max Has Max
Als|o Als|o Als|o Al3|oe Ala]oe Als|o Ala]o Al4]|o Al4|o
B|l2]4 4|4 B|lo]|- o - 0| - B|lz2]4 B|z2]| 4 B| 4] 4 —| =
cla|7z clza2|7 cla|7 cl7|7 clo clz217 clal7 clza217 2| 7

Free:3 Free: 1 Free:5 Free: 0 Free:7 Free: 3 Free: 2 Free: 0 Free: 4

©)] (b) © (d) (e)

(a) (b) (©) (@
Demonstration that the state in (a) is safe Demonstration that the state in b is not safe
49 @ UNSW 50 @ UNSW
49 50
Safe and Unsafe State Bankers Algorithm
» Unsafe states are not necessarily deadlocked * Modelled on a Banker with Customers
« With a lucky sequence, all processes may complete * The .bavnker has a limited amount of money to loan customers
i * Limited number of resources
* However, we cannot guarantee that they will complete * Each customer can borrow money up to the customer’s credit limit
(not deadlock) « Maximum number of resources required
* Safe states guarantee we will eventually complete * Basic Idea
all processes * Keep the bank in a safe state
. . * So all customers are happy even if they all request to borrow up to their
* Deadlock avoidance algorithm credit limit at the same time.

* Only grant requests that result in safe states * Customers wishing to borrow such that the bank would enter an unsafe
state must wait until somebody else repays their loan such that the the
transaction becomes safe.

51 @ UNSW 52 @ UNSW
51 52

The Banker's Algorithm for a Single Resource

Has Max Has Max Has Max
Alo|s ali1ls Al s
B 0 5 B 1 5 B > 5
cjoj4 clz2]4 clz2]a4
D 0 7 D 4 7 D 4 7

Free: 10 Free: 2 Free: 1

@ (b) ©

* Three resource allocation states
* safe
* safe B requests one
. f more, should we

unsate grant it?

53 HUNSW

Banker's Algorithm for Multiple Resources

2 2

2 o P & o &P
ER e ER e
FLESS S LET SO
SRS O RSO
AlJ3|0]|1]1 Ajt1]1f|ofo0 E = (6342)
slof[1]o]o Blof[1]1]2 :fg?gggi
cl1]1f1]o0 cls|1]o]o
pl1f1]of1 Dlofo|1]o0
Elofo]ofo Ela|1]1]o

Resources assigned Resources still needed

« Example of banker's algorithm with multiple resources
* Problem is structured similar to deadlock detection with multiple resources.
* Example in tutorial

53

54

Bankers Algorithm is not commonly used in Starvation

practice

* It is difficult (sometimes impossible) to know in advance « A process never receives the resource it is waiting for, despite the
* the resources a process will require resource (repeatedly) becoming free, the resource is always
* the number of processes in a dynamic system allocated to another waiting process.

* Example: An algorithm to allocate a resource may be to give the resource to
the shortest job first

* Works great for multiple short jobs in a system

* May cause a long job to wait indefinitely, even though not blocked.

* One solution:
* First-come, first-serve policy

55 @UNSW 56 @UNSW

56

