
Processes and Threads
Implementation

1

Learning Outcomes

• A basic understanding of the MIPS R3000 assembly
and compiler generated code.

• An understanding of the typical implementation
strategies of processes and threads

• Including an appreciation of the trade-offs between the
implementation approaches

• Kernel-threads versus user-level threads

• A detailed understanding of “context switching”

2

MIPS R3000

• Load/store architecture
• No instructions that operate on memory except load and

store
• Simple load/stores to/from memory from/to registers

• Store word: sw r4, (r5)
• Store contents of r4 in memory using address contained in register r5

• Load word: lw r3,(r7)
• Load contents of memory into r3 using address contained in r7
• Delay of one instruction after load before data available in destination

register
• Must always an instruction between a load from memory and the

subsequent use of the register.
• lw, sw, lb, sb, lh, sh,….

3

MIPS R3000

• Arithmetic and logical operations are register to
register operations

• E.g., add r3, r2, r1
• No arithmetic operations on memory

• Example
• add r3, r2, r1 ⇒ r3 = r2 + r1

•Some other instructions
• add, sub, and, or, xor, sll, srl
• move r2, r1⇒ r2 = r1

4

MIPS R3000

• All instructions are encoded in 32-bit
• Some instructions have immediate operands

• Immediate values are constants encoded in the
instruction itself

• Only 16-bit value
• Examples

• Add Immediate: addi r2, r1, 2048
⇒ r2 = r1 + 2048

• Load Immediate : li r2, 1234
⇒ r2 = 1234

5

Example code

Simple code example: a = a + 1

lw r4,32(r29) // r29 = stack pointer
li r5, 1
add r4, r4, r5
sw r4,32(r29)

6

Offset(Address)

MIPS Registers

• User-mode accessible registers
• 32 general purpose registers

• r0 hardwired to zero
• r31 the link register for jump-and-link

(JAL) instruction
• HI/LO

• 2 * 32-bits for multiply and divide
• PC

• Not directly visible
• Modified implicitly by jump and

branch instructions

7

Branching and Jumping

• Branching and jumping have a
branch delay slot

• The instruction following a
branch or jump is always
executed prior to destination of
jump

8

li r2, 1

sw r0,(r3)

j 1f

li r2, 2

li r2, 3

1: sw r2, (r3)

MIPS R3000

• RISC architecture – 5 stage pipeline
• Instruction partially through pipeline prior to jmp having an effect

9

Jump and Link Instruction

• JAL is used to implement
function calls

• r31 = PC+8

• Return Address register (RA)
is used to return from
function call

10

⁞

0x10 jal 1f

0x14 nop

0x18 lw r4,(r6)

⁞

1:

0x2a sw r2, (r3)

⁞

0x38 jr r31

0x3a nop

Compiler Register Conventions

• Given 32 registers, which registers are used for
• Local variables?
• Argument passing?
• Function call results?
• Stack Pointer?

11

Compiler Register Conventions

12

Simple factorial

int fact(int n)

{

int r = 1;

int i;

for (i = 1; i < n+1; i++) {

r = r * i;

}

return r;

}

0: 1880000b blez a0,30 <fact+0x30>

4: 24840001 addiu a0,a0,1

8: 24030001 li v1,1

c: 24020001 li v0,1

10: 00430018 mult v0,v1

14: 24630001 addiu v1,v1,1

18: 00001012 mflo v0

1c: 00000000 nop

20: 1464fffc bne v1,a0,14 <fact+0x14>

24: 00430018 mult v0,v1

28: 03e00008 jr ra

2c: 00000000 nop

30: 03e00008 jr ra

34: 24020001 li v0,1

13

Function Stack Frames

• Each function call allocates a
new stack frame for local
variables, the return address,
previous frame pointer etc.

• Frame pointer: start of current
stack frame

• Stack pointer: end of current stack
frame

• Example: assume f1() calls f2(),
which calls f3().

14

f1() stack
frame

Stack

Stack
Pointer

Frame
Pointer

Function Stack Frames

15

f1() stack
frame

Stack

Stack
Pointer

f2() stack
frame

Frame
Pointer

• Each function call allocates a
new stack frame for local
variables, the return address,
previous frame pointer etc.
– Frame pointer: start of current

stack frame
– Stack pointer: end of current

stack frame

• Example: assume f1() calls
f2(), which calls f3().

Function Stack Frames

16

f1() stack
frame

Stack

Stack
Pointer

f2() stack
frame

f3() stack
frame

Frame
Pointer

• Each function call allocates a
new stack frame for local
variables, the return address,
previous frame pointer etc.
– Frame pointer: start of current

stack frame
– Stack pointer: end of current

stack frame

• Example: assume f1() calls
f2(), which calls f3().

Stack Frame

• MIPS calling
convention for gcc

• Args 1-4 have space
reserved for them

17

Example Code

main ()

{

int i;

i =
sixargs(1,2,3,4,5,6);

}

int sixargs(int a, int
b, int c, int d, int e,
int f)

{

return a + b + c + d

+ e + f;

}

18

0040011c <main>:

40011c: 27bdffd8 addiu sp,sp,-40

400120: afbf0024 sw ra,36(sp)

400124: afbe0020 sw s8,32(sp)

400128: 03a0f021 move s8,sp

40012c: 24020005 li v0,5

400130: afa20010 sw v0,16(sp)

400134: 24020006 li v0,6

400138: afa20014 sw v0,20(sp)

40013c: 24040001 li a0,1

400140: 24050002 li a1,2

400144: 24060003 li a2,3

400148: 0c10002c jal 4000b0 <sixargs>

40014c: 24070004 li a3,4

400150: afc20018 sw v0,24(s8)

400154: 03c0e821 move sp,s8

400158: 8fbf0024 lw ra,36(sp)

40015c: 8fbe0020 lw s8,32(sp)

400160: 03e00008 jr ra

400164: 27bd0028 addiu sp,sp,40

...

19

004000b0 <sixargs>:

4000b0: 27bdfff8 addiu sp,sp,-8

4000b4: afbe0000 sw s8,0(sp)

4000b8: 03a0f021 move s8,sp

4000bc: afc40008 sw a0,8(s8)

4000c0: afc5000c sw a1,12(s8)

4000c4: afc60010 sw a2,16(s8)

4000c8: afc70014 sw a3,20(s8)

4000cc: 8fc30008 lw v1,8(s8)

4000d0: 8fc2000c lw v0,12(s8)

4000d4: 00000000 nop

4000d8: 00621021 addu v0,v1,v0

4000dc: 8fc30010 lw v1,16(s8)

4000e0: 00000000 nop

4000e4: 00431021 addu v0,v0,v1

4000e8: 8fc30014 lw v1,20(s8)

4000ec: 00000000 nop

4000f0: 00431021 addu v0,v0,v1

4000f4: 8fc30018 lw v1,24(s8)

4000f8: 00000000 nop

20

4000fc: 00431021 addu v0,v0,v1

400100: 8fc3001c lw v1,28(s8)

400104: 00000000 nop

400108: 00431021 addu v0,v0,v1

40010c: 03c0e821 move sp,s8

400110: 8fbe0000 lw s8,0(sp)

400114: 03e00008 jr ra

400118: 27bd0008 addiusp,sp,8

21

The Process Model

• Multiprogramming of four programs
• Conceptual model of 4 independent, sequential processes

(with a single thread each)
• Only one program active at any instant

22

Process

• Minimally consist of three segments
• Text

• contains the code (instructions)
• Data

• Global variables
• Stack

• Activation records of procedure/function/method
• Local variables

• Note:
• data can dynamically grow up

• E.g., malloc()-ing
• The stack can dynamically grow down

• E.g., increasing function call depth or recursion

23

Stack

Gap

Data

Text

Process Memory
Layout

Processes

Scheduler
Kernel Mode

User Mode

Process A Process B Process C

Process’s user-level stack and execution state

Process’s in-kernel stack and execution state

Processes

• User-mode
• Processes (programs) scheduled by the kernel
• Isolated from each other
• No concurrency issues between each other

• System-calls transition into and return from the kernel
• Kernel-mode

• Nearly all activities still associated with a process
• Kernel memory shared between all processes
• Concurrency issues exist between processes concurrently executing

in a system call

25

Threads
The Thread Model

(a) Three processes each with one thread
(b) One process with three threads

26

The Thread Model

• Items shared by all threads in a process
• Items that exist per thread

27

The Thread Model

Each thread has its own stack

28

A Subset of POSIX threads API

int pthread_create(pthread_t *, const pthread_attr_t *,

void *(*)(void *), void *);

void pthread_exit(void *);

int pthread_mutex_init(pthread_mutex_t *, const pthread_mutexattr_t *);

int pthread_mutex_destroy(pthread_mutex_t *);

int pthread_mutex_lock(pthread_mutex_t *);

int pthread_mutex_unlock(pthread_mutex_t *);

int pthread_rwlock_init(pthread_rwlock_t *,

const pthread_rwlockattr_t *);

int pthread_rwlock_destroy(pthread_rwlock_t *);

int pthread_rwlock_rdlock(pthread_rwlock_t *);

int pthread_rwlock_wrlock(pthread_rwlock_t *);

int pthread_rwlock_unlock(pthread_rwlock_t *);

29

Memory

Where to Implement Application
Threads?

30

OS

System Libraries

Application

Kernel Mode

User Mode

Device

Device

User-level threads
implemented in a library?

Kernel-provided threads
implemented in the OS?

Note: Thread API
similar in both

cases

Implementing Threads in User Space

A user-level threads library

31

User-level Threads

Scheduler

Scheduler SchedulerScheduler

Kernel Mode

User Mode

Process A Process B Process C

User-level Threads

• Implementation at user-level
• User-level Thread Control Block (TCB), ready queue, blocked queue, and

dispatcher
• Kernel has no knowledge of the threads (it only sees a single process)
• If a thread blocks waiting for a resource held by another thread inside

the same process, its state is saved and the dispatcher switches to
another ready thread

• Thread management (create, exit, yield, wait) are implemented in a
runtime support library

33

User-Level Threads

• Pros
• Thread management and switching at user level is much faster than

doing it in kernel level
• No need to trap (take syscall exception) into kernel and back to switch

• Dispatcher algorithm can be tuned to the application
• E.g. use priorities

• Can be implemented on any OS (thread or non-thread aware)
• Can easily support massive numbers of threads on a per-application

basis
• Use normal application virtual memory
• Kernel memory more constrained. Difficult to efficiently support wildly

differing numbers of threads for different applications.

34

User-level Threads

• Cons
• Threads have to yield() manually (no timer interrupt delivery to user-

level)
• Co-operative multithreading

• A single poorly design/implemented thread can monopolise the available CPU time
• There are work-arounds (e.g. a timer signal per second to enable pre-

emptive multithreading), they are course grain and a kludge.
• Does not take advantage of multiple CPUs (in reality, we still have a

single threaded process as far as the kernel is concerned)

35

User-Level Threads

• Cons
• If a thread makes a blocking system call (or takes a page fault), the

process (and all the internal threads) blocks
• Can’t overlap I/O with computation

36

Scheduler

Scheduler SchedulerScheduler

Kernel Mode

User Mode

Process
A

Process
B

Process
C

Implementing Threads in the Kernel

A threads package managed by the kernel
37

Kernel-provided Threads

Scheduler
Kernel Mode

User Mode

Process A Process B Process C

Kernel-provided Threads

• Also called kernel-level threads
• Even though they provide threads to applications

• Threads are implemented by the kernel
• TCBs are stored in the kernel

• A subset of information in a traditional PCB
• The subset related to execution context

• TCBs have a PCB associated with them
• Resources associated with the group of threads (the process)

• Thread management calls are implemented as system calls
• E.g. create, wait, exit

39

Kernel-provided Threads

• Cons
• Thread creation and destruction, and blocking and unblocking

threads requires kernel entry and exit.
• More expensive than user-level equivalent

40

Kernel-provided Threads

• Pros
• Preemptive multithreading
• Parallelism

• Can overlap blocking I/O with computation
• Can take advantage of a multiprocessor

Scheduler
Kernel Mode

User Mode

Process A Process B Process C

Multiprogramming Implementation

Skeleton of what lowest level of OS does when an
interrupt occurs – a context switch

42

Context Switch Terminology

• A context switch can refer to
• A switch between threads

• Involving saving and restoring of state associated with a thread
• A switch between processes

• Involving the above, plus extra state associated with a process.
• E.g. memory maps

43

Context Switch Occurrence

• A switch between process/threads can happen any
time the OS is invoked

• On a system call
• Mandatory if system call blocks or on exit();

• On an exception
• Mandatory if offender is killed

• On an interrupt
• Triggering a dispatch is the main purpose of the timer interrupt

A thread switch can happen between any two
instructions

Note instructions do not equal program statements

44

Context Switch

• Context switch must be transparent for
processes/threads

• When dispatched again, process/thread should not notice
that something else was running in the meantime (except
for elapsed time)

OS must save all state that affects the thread
• This state is called the process/thread context
• Switching between process/threads consequently

results in a context switch.

45

Simplified
Explicit
Thread
Switch

46

thread_switch(a,b)

{

thread_switch(a,b)

{

thread_switch(b,a)

{

}

}

}

Thread a Thread b

Assume Kernel-Level Threads

Scheduler
Kernel Mode

User Mode

Process A Process B Process C

Lets focus on user->kernel – switch – kernel -> user

Example Context Switch

• Running in user mode, SP points to user-level stack (not shown
on slide)

48

SP, PCRepresentation of
Kernel Stack

(Memory)

Process memory
(user-mode)

Example Context Switch

• Take an exception, syscall, or interrupt, and we switch to the
kernel stack

49

SP, PC

Example Context Switch

• We push a trapframe on the stack
• Also called exception frame, user-level context….
• Includes the user-level PC and SP

50

SP

trapframe

Example Context Switch

• Call ‘C’ code to process syscall, exception, or interrupt
• Results in a ‘C’ activation stack building up

51

SP

trapframe‘C’ activation stack

Example Context Switch

• The kernel decides to perform a context switch
• It chooses a target thread (or process)
• It pushes remaining kernel context onto the stack

52

SP

trapframe‘C’ activation stackKernel State

Example Context Switch

• Any other existing thread must
• be in kernel mode (on a uni processor),
• and have a similar stack layout to the stack we are currently

using

53

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

Kernel stacks of other
threads/processes

Example Context Switch

• We save the current SP in the PCB (or TCB), and load
the SP of the target thread.

• Thus we have switched contexts

54

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

Example Context Switch

• Load the target thread’s previous context, and return to C

55

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stack

trapframe‘C’ activation stackKernel State

Example Context Switch

• The C continues and (in this example) returns to user mode.

56

SP

trapframe‘C’ activation stackKernel State

trapframe

trapframe‘C’ activation stackKernel State

Example Context Switch

• The user-level context is restored
• The registers load with that processes previous content

57

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

Example Context Switch

• The user-level SP and PC is restored

58

PC,SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

The Interesting Part of a Thread Switch

• What does the “push kernel state” part do???

59

SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

Simplified OS/161 thread_switch

static

void

thread_switch(threadstate_t newstate, struct wchan *wc)

{

struct thread *cur, *next;

cur = curthread;

do {

next = threadlist_remhead(&curcpu->c_runqueue);

if (next == NULL) {

cpu_idle();

}

} while (next == NULL);

/* do the switch (in assembler in switch.S) */

switchframe_switch(&cur->t_context, &next->t_context);

}

60

Lots of code
removed – only
basics of pick

next thread and
switch to it

remain

OS/161 switchframe_switch

switchframe_switch:
/*
* a0 contains the address of the switchframe pointer in the old thread.
* a1 contains the address of the switchframe pointer in the new thread.
*
* The switchframe pointer is really the stack pointer. The other
* registers get saved on the stack, namely:
*
* s0-s6, s8
* gp, ra
*
* The order must match <mips/switchframe.h>.
*
* Note that while we'd ordinarily need to save s7 too, because we
* use it to hold curthread saving it would interfere with the way
* curthread is managed by thread.c. So we'll just let thread.c
* manage it.
*/

61

OS/161 switchframe_switch

/* Allocate stack space for saving 10 registers. 10*4 = 40 */

addi sp, sp, -40

/* Save the registers */

sw ra, 36(sp)

sw gp, 32(sp)

sw s8, 28(sp)

sw s6, 24(sp)

sw s5, 20(sp)

sw s4, 16(sp)

sw s3, 12(sp)

sw s2, 8(sp)

sw s1, 4(sp)

sw s0, 0(sp)

/* Store the old stack pointer in the old thread */

sw sp, 0(a0)

62

Save the registers
that the ‘C’

procedure calling
convention

expects
preserved

OS/161 switchframe_switch

/* Get the new stack pointer from the new thread */

lw sp, 0(a1)

nop /* delay slot for load */

/* Now, restore the registers */

lw s0, 0(sp)

lw s1, 4(sp)

lw s2, 8(sp)

lw s3, 12(sp)

lw s4, 16(sp)

lw s5, 20(sp)

lw s6, 24(sp)

lw s8, 28(sp)

lw gp, 32(sp)

lw ra, 36(sp)

nop /* delay slot for load */

63

OS/161 switchframe_switch

/* and return. */

j ra

addi sp, sp, 40 /* in delay slot */

64

Revisiting
Thread Switch

65

switchframe_switch(a,b)

{

switchframe_switch(a,b)

{

switchframe_switch(b,a)

{

}

}

}

Thread a Thread b

