
Processes and Threads
Implementation
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Learning Outcomes

• A basic understanding of the MIPS R3000 assembly 
and compiler generated code.

• An understanding of the typical implementation 
strategies of processes and threads

• Including an appreciation of the trade-offs between the 
implementation approaches

• Kernel-threads versus user-level threads

• A detailed understanding of “context switching”
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MIPS R3000

• Load/store architecture
• No instructions that operate on memory except load and 

store
• Simple load/stores to/from memory from/to registers

• Store word: sw r4, (r5)
• Store contents of r4 in memory using address contained in register r5

• Load word: lw r3,(r7)
• Load contents of memory into r3 using address contained in r7
• Delay of one instruction after load before data available in destination 

register
• Must always an instruction between a load from memory and the 

subsequent use of the register.
• lw, sw, lb, sb, lh, sh,….
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MIPS R3000

• Arithmetic and logical operations are register to 
register operations

• E.g., add r3, r2, r1
• No arithmetic operations on memory

• Example
• add r3, r2, r1 ⇒ r3 = r2 + r1

•Some other instructions
• add, sub, and, or, xor, sll, srl
• move r2, r1⇒ r2 = r1
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MIPS R3000

• All instructions are encoded in 32-bit
• Some instructions have immediate operands

• Immediate values are constants encoded in the 
instruction itself

• Only 16-bit value
• Examples

• Add Immediate: addi r2, r1, 2048
⇒ r2 = r1 + 2048

• Load Immediate : li r2, 1234 
⇒ r2 = 1234
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Example code

Simple code example: a = a + 1

lw r4,32(r29) // r29 = stack pointer
li r5, 1
add r4, r4, r5
sw r4,32(r29)
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MIPS Registers

• User-mode accessible registers
• 32 general purpose registers

• r0 hardwired to zero
• r31 the link register for jump-and-link 

(JAL) instruction
• HI/LO 

• 2 * 32-bits for multiply and divide
• PC 

• Not directly visible
• Modified implicitly by jump and 

branch instructions
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Branching and Jumping

• Branching and jumping have a 
branch delay slot

• The instruction following a 
branch or jump is always 
executed prior to destination of 
jump
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li r2, 1

sw r0,(r3)

j 1f

li r2, 2

li r2, 3

1: sw r2, (r3)



MIPS R3000

• RISC architecture – 5 stage pipeline
• Instruction partially through pipeline prior to jmp having an effect 

9



Jump and Link Instruction

• JAL is used to implement 
function calls

• r31 = PC+8

• Return Address register (RA) 
is used to return from 
function call
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⁞ 

0x10 jal 1f

0x14 nop

0x18 lw r4,(r6)

⁞

1:

0x2a sw r2, (r3)

⁞ 

0x38 jr r31

0x3a nop



Compiler Register Conventions

• Given 32 registers, which registers are used for
• Local variables?
• Argument passing?
• Function call results?
• Stack Pointer?
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Compiler Register Conventions
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Simple factorial

int fact(int n)

{

int r = 1;

int i;

for (i = 1; i < n+1; i++) {

r = r * i;

}

return r;

}

0:   1880000b        blez a0,30 <fact+0x30>

4:   24840001        addiu a0,a0,1

8:   24030001        li      v1,1

c:   24020001        li      v0,1

10:   00430018        mult v0,v1

14:   24630001        addiu v1,v1,1

18:   00001012        mflo v0

1c:   00000000        nop

20:   1464fffc        bne v1,a0,14 <fact+0x14>

24:   00430018        mult v0,v1

28:   03e00008        jr ra

2c:   00000000        nop

30:   03e00008        jr ra

34:   24020001        li      v0,1
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Function Stack Frames

• Each function call allocates a 
new stack frame for local 
variables, the return address, 
previous frame pointer etc.

• Frame pointer: start of current 
stack frame

• Stack pointer: end of current stack 
frame

• Example: assume f1() calls f2(), 
which calls f3().
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f1() stack 
frame

Stack

Stack 
Pointer

Frame 
Pointer



Function Stack Frames
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f1() stack 
frame

Stack

Stack 
Pointer

f2() stack 
frame

Frame 
Pointer

• Each function call allocates a 
new stack frame for local 
variables, the return address, 
previous frame pointer etc.
– Frame pointer: start of current 

stack frame
– Stack pointer: end of current 

stack frame

• Example: assume f1() calls 
f2(), which calls f3().



Function Stack Frames
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f1() stack 
frame

Stack

Stack 
Pointer

f2() stack 
frame

f3() stack 
frame

Frame 
Pointer

• Each function call allocates a 
new stack frame for local 
variables, the return address, 
previous frame pointer etc.
– Frame pointer: start of current 

stack frame
– Stack pointer: end of current 

stack frame

• Example: assume f1() calls 
f2(), which calls f3().



Stack Frame

• MIPS calling 
convention for gcc

• Args 1-4 have space 
reserved for them
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Example Code

main ()

{

int i;

i = 
sixargs(1,2,3,4,5,6);

}

int sixargs(int a, int 
b, int c, int d, int e, 
int f)

{

return a + b + c + d

+ e + f;

}
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0040011c <main>:

40011c: 27bdffd8 addiu sp,sp,-40

400120: afbf0024 sw ra,36(sp)

400124: afbe0020 sw s8,32(sp)

400128: 03a0f021 move s8,sp

40012c: 24020005 li v0,5

400130: afa20010 sw v0,16(sp)

400134: 24020006 li v0,6

400138: afa20014 sw v0,20(sp)

40013c: 24040001 li a0,1

400140: 24050002 li a1,2

400144: 24060003 li a2,3

400148: 0c10002c jal 4000b0 <sixargs>

40014c: 24070004 li a3,4

400150: afc20018 sw v0,24(s8)

400154: 03c0e821 move sp,s8

400158: 8fbf0024 lw ra,36(sp)

40015c: 8fbe0020 lw s8,32(sp)

400160: 03e00008 jr ra

400164: 27bd0028 addiu sp,sp,40

...
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004000b0 <sixargs>:

4000b0: 27bdfff8 addiu sp,sp,-8

4000b4: afbe0000 sw s8,0(sp)

4000b8: 03a0f021 move s8,sp

4000bc: afc40008 sw a0,8(s8)

4000c0: afc5000c sw a1,12(s8)

4000c4: afc60010 sw a2,16(s8)

4000c8: afc70014 sw a3,20(s8)

4000cc: 8fc30008 lw v1,8(s8)

4000d0: 8fc2000c lw v0,12(s8)

4000d4: 00000000 nop

4000d8: 00621021 addu v0,v1,v0

4000dc: 8fc30010 lw v1,16(s8)

4000e0: 00000000 nop

4000e4: 00431021 addu v0,v0,v1

4000e8: 8fc30014 lw v1,20(s8)

4000ec: 00000000 nop

4000f0: 00431021 addu v0,v0,v1

4000f4: 8fc30018 lw v1,24(s8)

4000f8: 00000000 nop
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4000fc: 00431021 addu v0,v0,v1

400100: 8fc3001c lw v1,28(s8)

400104: 00000000 nop

400108: 00431021 addu v0,v0,v1

40010c: 03c0e821 move sp,s8

400110: 8fbe0000 lw s8,0(sp)

400114: 03e00008 jr ra

400118: 27bd0008 addiusp,sp,8
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The Process Model

• Multiprogramming of four programs
• Conceptual model of 4 independent, sequential processes 

(with a single thread each)
• Only one program active at any instant
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Process

• Minimally consist of three segments
• Text

• contains the code (instructions)
• Data

• Global variables
• Stack

• Activation records of procedure/function/method
• Local variables 

• Note:
• data can dynamically grow up

• E.g., malloc()-ing
• The stack can dynamically grow down

• E.g., increasing function call depth or recursion
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Processes

Scheduler
Kernel Mode

User Mode

Process A Process B Process C

Process’s user-level stack and execution state

Process’s in-kernel stack and execution state



Processes

• User-mode
• Processes (programs) scheduled by the kernel
• Isolated from each other
• No concurrency issues between each other

• System-calls transition into and return from the kernel
• Kernel-mode

• Nearly all activities still associated with a process
• Kernel memory shared between all processes
• Concurrency issues exist between processes concurrently executing 

in a system call
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Threads
The Thread Model

(a) Three processes each with one thread
(b) One process with three threads
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The Thread Model

• Items shared by all threads in a process
• Items that exist per thread
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The Thread Model

Each thread has its own stack
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A Subset of POSIX threads API

int pthread_create(pthread_t *, const pthread_attr_t *,

void *(*)(void *), void *);

void  pthread_exit(void *);

int pthread_mutex_init(pthread_mutex_t *, const pthread_mutexattr_t *);

int pthread_mutex_destroy(pthread_mutex_t *);

int pthread_mutex_lock(pthread_mutex_t *);

int pthread_mutex_unlock(pthread_mutex_t *);

int pthread_rwlock_init(pthread_rwlock_t *,

const pthread_rwlockattr_t *);

int pthread_rwlock_destroy(pthread_rwlock_t *);

int pthread_rwlock_rdlock(pthread_rwlock_t *);

int pthread_rwlock_wrlock(pthread_rwlock_t *);

int pthread_rwlock_unlock(pthread_rwlock_t *);
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Memory

Where to Implement Application 
Threads?
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OS

System Libraries

Application

Kernel Mode

User Mode

Device

Device

User-level threads 
implemented in a library?

Kernel-provided threads 
implemented in the OS?

Note: Thread API
similar in both

cases



Implementing Threads in User Space

A user-level threads library
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User-level Threads

Scheduler

Scheduler SchedulerScheduler

Kernel Mode

User Mode

Process A Process B Process C



User-level Threads

• Implementation at user-level
• User-level Thread Control Block (TCB), ready queue, blocked queue, and 

dispatcher
• Kernel has no knowledge of the threads (it only sees a single process)
• If a thread blocks waiting for a resource held by another thread inside 

the same process, its state is saved and the dispatcher switches to 
another ready thread

• Thread management  (create, exit, yield, wait) are implemented in a 
runtime support library
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User-Level Threads

• Pros
• Thread management and switching at user level is much faster than 

doing it in kernel level
• No need to trap (take syscall exception) into kernel and back to switch

• Dispatcher algorithm can be tuned to the application
• E.g. use priorities

• Can be implemented on any OS (thread or non-thread aware)
• Can easily support massive numbers of threads on a per-application 

basis
• Use normal application virtual memory
• Kernel memory more constrained. Difficult to efficiently support wildly 

differing numbers of threads for different applications.
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User-level Threads

• Cons
• Threads have to yield() manually (no timer interrupt delivery to user-

level)
• Co-operative multithreading

• A single poorly design/implemented thread can monopolise the available CPU time
• There are work-arounds (e.g. a timer signal per second to enable pre-

emptive multithreading), they are course grain and a kludge.
• Does not take advantage of multiple CPUs (in reality, we still have a 

single threaded process as far as the kernel is concerned)
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User-Level Threads

• Cons
• If a thread makes a blocking  system call (or takes a page fault), the 

process (and all the internal threads) blocks
• Can’t overlap I/O with computation
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Implementing Threads in the Kernel

A threads package managed by the kernel
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Kernel-provided Threads

Scheduler
Kernel Mode

User Mode

Process A Process B Process C



Kernel-provided Threads

• Also called kernel-level threads
• Even though they provide threads to applications 

• Threads are implemented by the kernel
• TCBs are stored in the kernel

• A subset of information in a traditional PCB
• The subset related to execution context

• TCBs have a PCB associated with them
• Resources associated with the group of threads (the process)

• Thread management calls are implemented as system calls
• E.g. create, wait, exit
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Kernel-provided Threads

• Cons
• Thread creation and destruction, and blocking and unblocking 

threads requires kernel entry and exit.
• More expensive than user-level equivalent
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Kernel-provided Threads

• Pros
• Preemptive multithreading
• Parallelism

• Can overlap blocking I/O with computation
• Can take advantage of a multiprocessor 

Scheduler
Kernel Mode

User Mode

Process A Process B Process C



Multiprogramming Implementation

Skeleton of what lowest level of OS does when an 
interrupt occurs – a context switch
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Context Switch Terminology

• A context switch can refer to
• A switch between threads

• Involving saving and restoring of state associated with a thread
• A switch between processes

• Involving the above, plus extra state associated with a process.
• E.g. memory maps
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Context Switch Occurrence

• A switch between process/threads can happen any 
time the OS is invoked

• On a system call
• Mandatory if system call blocks or on exit();

• On an exception
• Mandatory if offender is killed

• On an interrupt
• Triggering a dispatch is the main purpose of the timer interrupt

A thread switch can happen between any two 
instructions

Note instructions do not equal program statements
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Context Switch

• Context switch must be transparent for 
processes/threads

• When dispatched again, process/thread should not notice 
that something else was running in the meantime (except 
for elapsed time)

OS must save all state that affects the thread
• This state is called the process/thread context
• Switching between process/threads consequently 

results in a context switch.
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Simplified 
Explicit
Thread 
Switch
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thread_switch(a,b)

{

thread_switch(a,b)

{

thread_switch(b,a)

{

}

}

}

Thread a Thread b



Assume Kernel-Level Threads

Scheduler
Kernel Mode

User Mode

Process A Process B Process C

Lets focus on user->kernel – switch – kernel -> user



Example Context Switch

• Running in user mode, SP points to user-level stack (not shown 
on slide)
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SP, PCRepresentation of 
Kernel Stack 

(Memory)

Process memory 
(user-mode)



Example Context Switch

• Take an exception, syscall, or interrupt, and we switch to the 
kernel stack
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SP, PC



Example Context Switch

• We push a trapframe on the stack
• Also called exception frame, user-level context….
• Includes the user-level PC and SP
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SP

trapframe



Example Context Switch

• Call ‘C’ code to process syscall, exception, or interrupt
• Results in a ‘C’ activation stack building up 
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SP

trapframe‘C’ activation stack



Example Context Switch

• The kernel decides to perform a context switch
• It chooses a target thread (or process)
• It pushes remaining kernel context onto the stack
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SP

trapframe‘C’ activation stackKernel State



Example Context Switch

• Any other existing thread must
• be in kernel mode (on a uni processor),
• and have a similar stack layout to the stack we are currently 

using
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SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

Kernel stacks of other 
threads/processes



Example Context Switch

• We save the current SP in the PCB (or TCB), and load 
the SP of the target thread.

• Thus we have switched contexts
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SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State



Example Context Switch

• Load the target thread’s previous context, and return to C
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SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stack

trapframe‘C’ activation stackKernel State



Example Context Switch

• The C continues and (in this example) returns to user mode.
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SP

trapframe‘C’ activation stackKernel State

trapframe

trapframe‘C’ activation stackKernel State



Example Context Switch

• The user-level context is restored
• The registers load with that processes previous content 
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SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State



Example Context Switch

• The user-level SP and PC is restored
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PC,SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State



The Interesting Part of a Thread Switch

• What does the “push kernel state” part do???
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SP

trapframe‘C’ activation stackKernel State

trapframe‘C’ activation stackKernel State



Simplified OS/161 thread_switch

static

void

thread_switch(threadstate_t newstate, struct wchan *wc)

{

struct thread *cur, *next;

cur = curthread;

do {

next = threadlist_remhead(&curcpu->c_runqueue);

if (next == NULL) {

cpu_idle();

}

} while (next == NULL);

/* do the switch (in assembler in switch.S) */

switchframe_switch(&cur->t_context, &next->t_context);

}
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Lots of code 
removed – only 
basics of pick 

next thread and 
switch to it 

remain



OS/161 switchframe_switch

switchframe_switch:
/*
* a0 contains the address of the switchframe pointer in the old thread.
* a1 contains the address of the switchframe pointer in the new thread.
*
* The switchframe pointer is really the stack pointer. The other
* registers get saved on the stack, namely:
*
*      s0-s6, s8
*      gp, ra
*
* The order must match <mips/switchframe.h>.
*
* Note that while we'd ordinarily need to save s7 too, because we
* use it to hold curthread saving it would interfere with the way
* curthread is managed by thread.c. So we'll just let thread.c
* manage it.
*/
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OS/161 switchframe_switch

/* Allocate stack space for saving 10 registers. 10*4 = 40 */

addi sp, sp, -40

/* Save the registers */

sw   ra, 36(sp)

sw   gp, 32(sp)

sw   s8, 28(sp)

sw   s6, 24(sp)

sw   s5, 20(sp)

sw   s4, 16(sp)

sw   s3, 12(sp)

sw   s2, 8(sp)

sw   s1, 4(sp)

sw   s0, 0(sp)

/* Store the old stack pointer in the old thread */

sw   sp, 0(a0)
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Save the registers 
that the ‘C’ 

procedure calling 
convention 

expects 
preserved



OS/161 switchframe_switch

/* Get the new stack pointer from the new thread */

lw   sp, 0(a1)

nop           /* delay slot for load */

/* Now, restore the registers */

lw   s0, 0(sp)

lw   s1, 4(sp)

lw   s2, 8(sp)

lw   s3, 12(sp)

lw   s4, 16(sp)

lw   s5, 20(sp)

lw   s6, 24(sp)

lw   s8, 28(sp)

lw   gp, 32(sp)

lw   ra, 36(sp)

nop                  /* delay slot for load */
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OS/161 switchframe_switch

/* and return. */

j ra

addi sp, sp, 40      /* in delay slot */
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Revisiting
Thread Switch

65

switchframe_switch(a,b)

{

switchframe_switch(a,b)

{

switchframe_switch(b,a)

{

}

}

}

Thread a Thread b


