
Case study: ext3 FS



Brief Journaling Intro

2

3 1

dir entries i-nodes data blocks

• Example: deleting a file
1.Remove the directory entry

2.Mark the i-node as free

3.Mark disk blocks as free



Brief Journaling Intro

2

3 1

dir entries i-nodes data blocks

1.Remove the directory entry
2.Mark the i-node as free
3.Mark disk blocks as free

1. Write to journal

2. Perform updates

3. Remove journal entry



4

The ext3 file system

• Design goals

– Add journaling capability to the ext2 FS

– Backward and forward compatibility with ext2

• Existing ext2 partitions can be mounted as ext3

– Leverage the proven ext2 performance

– Reuse most of the ext2 code base

– Reuse ext2 tools, including e2fsck



5

The ext3 journal

Option1: Journal FS data 
structure updates

• Example:
– Start transaction

– Delete dir entry

– Delete i-node

– Release blocks 32, 17, 60

– End transaction

Option2: Journal disk block 
updates

• Example:
– Start transaction

– Update block #n1 (contains the 
dir entry)

– Update block #n2 (i-node 
allocation bitmap)

– Update block #n3 (data block 
allocation bitmap)

– Add transaction

Question: which approach is better?



6

The ext3 journal

Option1: Journal FS data 
structure updates

✔ Efficient use of journal space; 
hence faster journaling

✘ Individual updates are applied 
separately

✘ The journaling layer must 
understand FS semantics

Option2: Journal disk block 
updates

✗ Even a small update adds a whole 
block to the journal

✔ Multiple updates to the same 
block can be aggregated into a 
single update

✔ The journaling layer is FS-
independent (easier to implement)

Ext3 implements Option 2



7

Journaling Block Device (JBD)

• The ext3 journaling layer is called 
Journaling Block Device (JBD)

• JBD interface

– Start a new transaction

– Update a disk block as part of a 
transaction

– Complete a transaction

• Completed transactions are 
buffered in RAM

ext3fs

JBD

start, update, 
complete

Block 
device

Journal



8

Journaling Block Device (JBD)

• JBD interface (continued)

– Commit: write transaction data to the 
journal (persistent storage)

• Multiple FS transactions are 
committed in one go

– Checkpoint: flush the journal to the 
disk 

• Used when the journal is full or the 
FS is being unmounted

ext3fs

JBD

start, update, 
complete

Block 
device

Journal



9

Transaction lifecycle

in progress

completed

committed

checkpointed

Updates are written to the journal and
marked as committed. Transaction can be 
replayed after an unclean unmount

Updates are buffered in RAM

Updates are buffered in RAM; no additional 
updates are allowed in the same transaction

Updates are written to the file system; the 
transaction is removed from the journal



10

Journaling modes

• Ext3 supports two journaling modes

– Metadata+data

• Enforces atomicity of all FS operations

– Metadata journaling

• Metadata is journalled

• Data blocks are written directly to the disk

• Improves performance

• Enforces file system integrity
• Does not enforce atomicity of write's

– New file content can be stale blocks



11

JBD

• JBD can keep the journal on a block device or in a file

– Enables compatibility with ext2 (the journal is just a 
normal file)

• JBD is independent of ext3-specific data structures

– Separation of concerns

• The FS maintains on-disk data and metadata

• JBD takes care of journaling

– Code reuse

• JBD can be used by any other FS that requires 
journaling


