Virtual Memory

THE UNIVERSITY OF 1
NEW SOUTH WALES
L

Learning Outcomes

» An understanding of page-based virtual
memory in depth.

— Including the R3000’s support for virtual
memory.

THE UNIVERSITY OF 2
NEW SOUTH WALES
=l

Memory Management Unit Virtual Address
y 9 spce 15| Page-based VM
14
(or TLB) 14
The CPU sends virtual * Virtual Memory 12 . PhySical Memory
cPU addresses to the MMU — Divided into equal- 1 .. .
package sized pages - D|V|ded_|nto
PU — A mapping is a 10 equal-sized
T) translation between 9 frames
| mansgorint | Memory || comren, - Apageandaframe g
unit * A page and invalid 7 7
— Mappings defined at
X l l runtime 6 6
Bus « They can change 5 5
! — Address space can
Tty s sl nave hols : :
— Process does not
, . have to be 2 2)
The position and function of the MMU contiguous in 1 4 Physical Address
AR, : prysiealmemery g 0 Space 4
LS LS
3 4
) . : Programmer’s perspective:
Virtual Address Virtual Address g
Space K Typ|Ca| Address Space logically present
System’s perspective: Not
T
Kernel /S Space LayOUt mapped, data on disk
T Stack region is at top, * A process may
] and can grow down be only partially
Stack .
- * Heap has free space to resident
Shared grow up — Allows OS to
Libraries] « Textis typically read-only store individual
] o pages on disk
BSS L « Kernel is in a reserved, _ Saves memo
(heap) | F | protected, shared region for infrequentz
E + 0-th page typically not used data & code
Data T\ used, why? + What happens if
T t we access non-
ex i
T// reS|dent? Physical Address
uew;;mumg ; memory: Space
]
5 6

Proc 1 Address

Proc 2 Address

Space | == ! = Space
Ui 4
Currently . 5 ! B2 Page FaUItS
running~~—___ | sl x| Referencing an invalid page triggers a page fault
e AT Physical /|| + An exception handled by the OS
I | Address Space | + Broadly, two standard page fault types
[— — lllegal Address (protection error)
: L L U « Signal or kill the process
Vo L T Y — Page not resident
I L * Get an empty frame
:]] :H + Load page from disk
" — Z J » Update page (translation) table (enter frame #, set valid bit, etc.)
L [— . * Restart the faulting instruction
1 Disk
Memory i M
Access i L
i | K]
! | J
JNIVERS| ! 1 Al 7 J SITY ¢ 8
R v 2 (o] | 0] | s
7 8
Virtual Address -
Space 15 15
pace 1% Page 1 14 Shared Pages
» Page table for 42 12 » Private code and data « Shared code
resident part of 11 L n — Each process has own — Single copy of code
address space 10 .| 10 copy of code and data shared between all
9 19 — Code and data can processes executing it
8 | 8 appear anywhere in — Code must not be self
7 |7 the address space modifying
6 | | 6 — Code must appear at
5 13| 5 same address in all
4 | 4 processes
3 13
2]2
1 Physical 17 1
i MW SR WARS 0 Address Space °0 m NEW ISR WARS 10
L — Lo
9 10
Proc 1 Address Proc 2 Address
— Space S Space I I
- Z - Page Table Structure -
0] | X | B » Page table is (logically) an array of 5]
Physical
. Addroe oy . frame numbers -
—] — Index by page number]
L L Each page-table entry (PTE) also has
L - other bits =
Caching
— Two (or more) [disabled Modified Present/absent [
| processes I —
running the '/ '/ '/
[] same program T % ‘ | | | | Page frame number T
T and sharing]]
t—1 the text section — \ —
l l Referenced Protection L
2 Page Page [» Page [»
tt Table Table | Table 12|
=) — —

THE UNIVERSITY OF
NEW SOUTH WALES
Lo

PTE Attributes (bits)

» Present/Absent bit
— Also called valid bit, it indicates a valid mapping for the page
» Modified bit
— Also called dirty bit, it indicates the page may have been
modified in memory

» Reference bit
— Indicates the page has been accessed
* Protection bits
— Read permission, Write permission, Execute permission
— Or combinations of the above
» Caching bit
— Use to indicate processor should bypass the cache when

accessing memory
« Example: to access device registers or memory

THE UNIVERSITY OF 13
NEW SOUTH WALES
L

Address Translation

+ Every (virtual) memory address issued by
the CPU must be translated to physical
memory
— Every load and every store instruction
— Every instruction fetch

* Need Translation Hardware

* In a page-based system, translation
involves replacing the page number with a
frame number

THE UNIVERSITY OF 14
NEW SOUTH WALES

L
14

Virtual Memory Summary

virtual and physical mem chopped up in pages/frames

151

* programs use virtual

Presentiabseqt
bit

addresses o

- virtual to physical mapping a0

by MMU 2]
-first check if page present v

(present/absent bit)

-if yes: address in page table form
MSBs in physical address 4

-if no: bring in the page from disk 2

[T, =
B

o

l
T

°

i
I
|

Memory address—=

bit
Virtual Output
e [Tl LT o8

input
register

it it

(oTlofefeleffeleefeleofelefofef T [leffelefoel ol o] 52
i Fe— [R—

THE UNIVERSITY OF
NEW SOUTH WALES
L

Page Tables

+ Assume we have
— 32-bit virtual address (4 Gbyte address space)
— 4 KByte page size
— How many page table entries do we need for one
process?

THE UNIVERSITY OF 16
NEW SOUTH WALES

¥
16

Page Tables

» Assume we have
— 64-bit virtual address (humungous address space)
— 4 KByte page size
— How many page table entries do we need for one
process?
* Problem:
— Page table is very large
— Access has to be fast, lookup for every memory
reference
— Where do we store the page table?
* Registers?
* Main memory?

THE UNIVERSITY OF 17
NEW SOUTH WALES
L o

Page Tables

+ Page tables are implemented as data structures in main
memory
* Most processes do not use the full 4GB address space
- e.g., 0.1-1MB text, 0.1 — 10 MB data, 0.1 MB stack
* We need a compact representation that does not waste
space
— But is still very fast to search
» Three basic schemes
— Use data structures that adapt to sparsity
— Use data structures which only represent resident pages
— Use VM techniques for page tables (details left to extended OS)

THE UNIVERSITY OF 18
NEW SOUTH WALES

page tables

Two-level Page .
Tabl 2| e Two-level Translation

able ey , ,

e 2nd _jevel EZ ; :

page tables i i
representing 1023 U : e

unmapped . =4, :

pages are not el i :

allocated o . — ‘

— Null in the : E e ; ?-ﬁ‘.m
top-level - e
page table 1023 i '

. I i '
: Ene i i U
i 1 1
g =4, T 1 1
2 -, Ppages 1 1
1 . Program : : Main Memory
B : o ® ' '
L Lo
19 20
Example Translations
i THE UNIVERSITY OF 21 m THE UNIVERSITY OF 22
NEW SOUTH WALES NEW SOUTH WALES
L Lo
21 22
Summarising Two-level Page : : :
Tables Index bits determine node sizes
» Translating a 32-bit virtual + Translating a 32-bit virtual
address into a 32-bit -- address into a 32-bit --m
. 10-bits 10-bits 12-bits . 8-bits 12-bits 12-bits.
physical physical
* Recall: * Changing the indexing:
— thelevel 1 page table — the level 1 page table
node has 20 entries T":)‘:é:’e' node has 28 entries T"g;ee"e'
o 21 %4 = 4 KiB node table e 28 x4 =1KiB node table
— the level 2 page table node — the level 2 page table node
have 210 entries have 22 entries
o 2104 = 4 KiB node e 212 x4 = 16 KiB node
e [e]
20-bits 12-bits 20-bits 12-bits.
E THE UNIVERSITY OF 23 @ THE UNIVERSITY OF 24
NEW SOUTH WALES NEW SOUTH WALES
=] LS
23 24

Supporting 64-bit Virtual to

Physical Translation

« Translating a 64-bit
virtual address into a 64- | _ | - :
blt phys|ca|777 26-bits @ 26-bits 12-bits.

» Support 64-bits?:

‘ offset ‘

— thelevel 1 page tgble Two-level
node has 22° entries page
« 2248 = 512 MiB node table??7?
— the level 2 page table node
have 212 entries
e 2268 =512 MiB node
frame# ‘ offset ‘
52-bits 12-bits
i THE UNIVERSITY OF 25
NEW SOUTH WALES
B
25

Multi-level Page Tables

« Translating a 64-bit virtual address
into a 64-bit physical (Intel/AMD pre-
Ice Lake) ‘ ‘

— Only support 48-bit addresses
« Top 16-bits unused

— the level 1 page table node has 2°

‘ offset ‘

16-bits 9-bits jl 9-bits 9-bits 12-bits.

entries
e 2°+8=4KiB node Four-level
— the level 2 page table node have 2° page
entries table!!
e 2°x8=4KiB node
— the level 3 page table node have 2°
entries @
e 2°x8=4KiB node
— the !evel 4 page table node have 2° ‘ ‘ framett ‘ offset ‘
entries
« 2948 =4KiB node 12-bits 40-bits 12-bits
m THE UNIVERSITY OF 26
NEW SOUTH WALES
L

Intel 4-Level Page Tables

—

Figure 4-8. Linear-Address Translation 1o a 4-KByte Page using 4-Level Paging

THE UNIVERSITY OF 27
NEW SOUTH WALES
L

Alternative: Inverted Page Table
PID VPN offset

T]

[7

()
(=)

Index| PID | VPN ctrl| next

Hash Anchor Table
(HAT)

O WN O

IPT: entry for each physical frame

THE UNIVERSITY OF
NEW SOUTH WALES
LS

28

Alternative: Inverted Page Table

PID VPN offset

o[06 [0x123]
05

Index| PID | VPN ctrl | next
Hash Anchor Table 0
(HAT) 1
@ —21 | OxIA 0x40C
0x40C] 0 | 0x5 0x0 !
> 0x40D

ppn offset

THE UNIVERSITY OF
NEW SOUTH WALES
R

Inverted Page Table (IPT)

* “Inverted page table” is an array of page
numbers sorted (indexed) by frame number (it's
a frame table).

 Algorithm
— Compute hash of page number
— Extract index from hash table
— Use this to index into inverted page table
— Match the PID and page number in the IPT entry

— If match, use the index value as frame # for
translation

— If no match, get next candidate IPT entry from chain
field

— If NULL chain entry = page fault

THE UNIVERSITY OF 30
NEW SOUTH WALES
el

Properties of IPTs

* IPT grows with size of RAM, NOT virtual address space

» Frame table is needed anyway (for page replacement,
more later)

» Need a separate data structure for non-resident pages

» Saves a vast amount of space (especially on 64-bit
systems)

» Used in some IBM and HP workstations

Given n processes

* how many page tables will the system
have for
—‘normal’ page tables
—inverted page tables?

THE UNIVERSITY OF 31
NEW SOUTH WALES
L

THE UNIVERSITY OF
NEW SOUTH WALES
=l

Another look at sharing...

Proc 1 Address

Two (or more)
processes
running the

same program
and sharing

the text section

34

THE UNIVERSITY OF
NEW SOUTH WALES
L

THE UNIVERSITY OF
NEW SOUTH WALES
=l

Improving the IPT: Hashed
Page Table

* Retain fast lookup of IPT
— A single memory reference in best case
* Retain page table sized based on physical
memory size (not virtual)
— Enable efficient frame sharing
— Support more than one mapping for same frame
+ Key addition: adding frame number to HPT entry

THE UNIVERSITY OF 35
NEW SOUTH WALES
L o

Hashed Page Table

PID VPN offset

mOW
T] “one me

[

Best”

HPT: Frame number stored in table

THE UNIVERSITY OF
NEW SOUTH WALES
Lo

Hashed Page Table

PID VPN offset

0[06 [0:123]
05

PID | VPN PEN |ctrl| next
. 1
2
3 0 0x5 0x42 0x0 +
4
5
6 1 0x1A |0x13 0x3
ppn offset

[ox42 [0x123]

Sharing Example

PID VPN offset

o[06 [0:123]
05

PID | VPN PEN |ctrl| next
. :
2
3 1 0x5 0x42 0x0
4
5
5 0 0x5 0x42 0x3
ppn offset

oxéz_[0x123]

THE UNIVERSITY OF
NEW SOUTH WALES
L

THE UNIVERSITY OF
NEW SOUTH WALES
LS

Sizing the Hashed Page Table

* HPT sized based on physical memory size

» With sharing
— Each frame can have more than one PTE
— More sharing increases number of slots used
« Increases collision likelihood
* However, we can tune HPT size based on:
« Physical memory size

« Expected sharing
« Hash collision avoidance.

— HPT a power of 2 multiple of number of physical
memory frame

THE UNIVERSITY OF
NEW SOUTH WALES

39

=]
39

VM Implementation Issue

» Performance?
— Each virtual memory reference can cause two
physical memory accesses
« One to fetch the page table entry
« One to fetch/store the data
=Intolerable performance impact!!

+ Solution:
— High-speed cache for page table entries (PTEs)
« Called a translation look-aside buffer (TLB)
« Contains recently used page table entries
« Associative, high-speed memory, similar to cache memory
* May be under OS control (unlike memory cache)

THE UNIVERSITY OF 40
NEW SOUTH WALES
L

e | | 1LB ti
hardware operaton
device!!l
. Secondary
Virtual Address Main Memory Memory
Page # | Offset ~")
[
“Translation
Lookaside Buffer
4
» TLB hit —
b }
»
Data
4 structure
Page/tabte | = .
in main
memol
TLB miss Ty N

|

Frame # Offset

Real Address

Page fault

S

Translation Lookaside Buffer

» Given a virtual address, processor examines the
TLB

+ If matching PTE found (TLB hit), the address is
translated

» Otherwise (TLB miss), the page number is used

to index the process’s page table
— If PT contains a valid entry, reload TLB and restart
— Otherwise, (page fault) check if page is on disk

« If on disk, swap itin
« Otherwise, allocate a new page or raise an exception

THE UNIVERSITY OF 42
NEW SOUTH WALES
el

TLB properties

» Page table is (logically) an array of frame
numbers

» TLB holds a (recently used) subset of PT entries

— Each TLB entry must be identified (tagged) with the
page # it translates
— Access is by associative lookup:
« All TLB entries’ tags are concurrently compared to the page #
« TLB is associative (or content-addressable) memory

page # | frame # |V | W

THE UNIVERSITY O 43
NEW SOUTH WALE
L

TLB properties
+ TLB may or may not be under direct OS control
— Hardware-loaded TLB

« On miss, hardware performs PT lookup and reloads TLB
« Example: x86, ARM

— Software-loaded TLB

« On miss, hardware generates a TLB miss exception, and
exception handler reloads TLB

« Example: MIPS, Itanium (optionally)
« TLB size: typically 64-128 entries

» Can have separate TLBs for instruction fetch
and data access

* TLBs can also be used with inverted page tables
(and others)

THE UNIVERSITY OF 44
NEW SOUTH WALES
LS

TLB and context switching

» TLB is a shared piece of hardware
+ Normal page tables are per-process (address space)
» TLB entries are process-specific
— On context switch need to flush the TLB (invalidate all
entries)
« high context-switching overhead (Intel x86)
— or tag entries with address-space ID (ASID)
« called a tagged TLB
« used (in some form) on all modern architectures
« TLB entry: ASID, page #, frame #, valid and write-protect bits

THE UNIVERSITY OF 45
NEW SOUTH WALES
L

TLB effect

» Without TLB

— Average number of physical memory
references per virtual reference
=2
» With TLB (assume 99% hit ratio)

— Average number of physical memory
references per virtual reference
=.99*1+0.01*2
=1.01

THE UNIVERSITY OF 46
NEW SOUTH WALES
L

Recap - Simplified Components of

Virtual Address Spaces V M SySte rTlage Tables for 3
(3 processes) processes
Frame Table
1 J
N I ~
D
AW ‘
W A
CPU
TLB
AR
Frame Pool
Physical Memory
E THE UNIVERSITY OF 47
NEW SOUTH WALES
L o

Recap - Simplified Components of
VM System

Virtual Address Spaces
(3 processes)
Inverted Page

Frame Pool

Physical Memory

THE UNIVERSITY OF 48
NEW SOUTH WALES

1 Table
@K\\\ o /
N /
\\Q/
CPU__ | __—
&
48

Virtual Address Spaces
(3 processes)

N

THE UNIVERSITY OF
NEW SOUTH WALES

Table
|

Recap - Simplified Components of
VM System

Hashed Page

Frame Table

7

I

Frame Pool

Physical Memory

49

MIPS R3000 TLB

3 12 1l

6 5

| VPN

| ASID | 0

EntryHi Register (TLB key fields)

+ D = Dirty = Write protect :
* G = Global (ignore ASID
in lookup)

N
?@\f ©
'ﬂ::; o‘\'&\\%
CPU__ | __—
TLB
=
49

R3000 Address
Space Layout

* ksegO:
— 512 megabytes
— Fixed translation window to
physical memory
« 0x80000000 - OxOfffffff virtual =
0x00000000 - Ox1fffffff physical
* TLB not used
Cacheable
Only kernel-mode accessible
— Usually where the kernel code
and data is placed

(53333333

0xC0000000

0xA0000000

0x80000000

Physical Memory

0x00000000

kuseg

31 12 n w9 8 7
|PFN |N |D |V|G|O
EntryLo Register (TLB data fields)
* N = Not cacheable + V= valid bit

64 TLB entries

Accessed via software through
Cooprocessor 0 registers
— EntryHi and EntryLo

THE UNIVERSITY OF
NEW SOUTH WALES
=l

R3000 Address
Space Layout

* kuseg:
— 2 gigabytes
— TLB translated (mapped)
— Cacheable (depending on ‘N’ bit)
— user-mode and kernel mode
accessible
Page size is 4K

THE UNIVERSITY OF
NEW SOUTH WALES
===l

R3000 Address
Space Layout

— Switching processes
switches the translation
(page table) for kuseg

Proc 2
kuseg

Proc 1
kuseg

OXFFFFFFFF

0xC000000

0xA0000000,

0x80000000

0x00000000

Proc 3
kuseg

OXFFFFFFFF

0xC000000

0xA0000000

0x80000000

kuseg

0x00000000

THE UNIVERSITY OF
NEW SOUTH WALES
=l

R3000 Address
Space Layout

+ kseg1:
— 512 megabytes
— Fixed translation window to
physical memory
+ 0xa0000000 - Oxbfffffff virtual =
0x00000000 - Ox1fffffff physical

» TLB not used

— NOT cacheable

— Only kernel-mode accessible

— Where devices are accessed (and
boot ROM)

OxffEEFEEE

0xC0000000

0x80000000

Physical Memory

53

THE UNIVERSITY OF
NEW SOUTH WALES
el

0x00000000

