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Learning Outcomes

» An understanding of page-based virtual
memory in depth.

— Including the R3000’s support for virtual
memory.
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PTE Attributes (bits)

» Present/Absent bit
— Also called valid bit, it indicates a valid mapping for the page
» Modified bit
— Also called dirty bit, it indicates the page may have been
modified in memory

» Reference bit
— Indicates the page has been accessed
* Protection bits
— Read permission, Write permission, Execute permission
— Or combinations of the above
» Caching bit
— Use to indicate processor should bypass the cache when

accessing memory
« Example: to access device registers or memory

THE UNIVERSITY OF 13
NEW SOUTH WALES
L

Address Translation

+ Every (virtual) memory address issued by
the CPU must be translated to physical
memory
— Every load and every store instruction
— Every instruction fetch

* Need Translation Hardware

* In a page-based system, translation
involves replacing the page number with a
frame number
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Virtual Memory Summary

virtual and physical mem chopped up in pages/frames
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Page Tables

+ Assume we have
— 32-bit virtual address (4 Gbyte address space)
— 4 KByte page size
— How many page table entries do we need for one
process?
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Page Tables

» Assume we have
— 64-bit virtual address (humungous address space)
— 4 KByte page size
— How many page table entries do we need for one
process?
* Problem:
— Page table is very large
— Access has to be fast, lookup for every memory
reference
— Where do we store the page table?
* Registers?
* Main memory?
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Page Tables

+ Page tables are implemented as data structures in main
memory
* Most processes do not use the full 4GB address space
- e.g., 0.1-1MB text, 0.1 — 10 MB data, 0.1 MB stack
* We need a compact representation that does not waste
space
— But is still very fast to search
» Three basic schemes
— Use data structures that adapt to sparsity
— Use data structures which only represent resident pages
— Use VM techniques for page tables (details left to extended OS)
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Summarising Two-level Page : : :
Tables Index bits determine node sizes
» Translating a 32-bit virtual + Translating a 32-bit virtual
address into a 32-bit -- address into a 32-bit --m
. 10-bits  10-bits 12-bits . 8-bits  12-bits 12-bits.
physical physical
* Recall: * Changing the indexing:
— thelevel 1 page table — the level 1 page table
node has 20 entries T":)‘:é:’e' node has 28 entries T"g;ee"e'
o 21 %4 = 4 KiB node table e 28 x4 =1KiB node table
— the level 2 page table node — the level 2 page table node
have 210 entries have 22 entries
o 2104 = 4 KiB node e 212 x4 = 16 KiB node
e [ e ]
20-bits 12-bits 20-bits 12-bits.
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Supporting 64-bit Virtual to

Physical Translation

« Translating a 64-bit
virtual address into a 64- | _ | - :
blt phys|ca|777 26-bits @ 26-bits 12-bits.

» Support 64-bits?:

‘ offset ‘

— thelevel 1 page tgble Two-level
node has 22° entries page
« 2248 = 512 MiB node table??7?
— the level 2 page table node
have 212 entries
e 2268 =512 MiB node
frame# ‘ offset ‘
52-bits 12-bits
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Multi-level Page Tables

« Translating a 64-bit virtual address
into a 64-bit physical (Intel/AMD pre-
Ice Lake) ‘ ‘

— Only support 48-bit addresses
« Top 16-bits unused

— the level 1 page table node has 2°

‘ offset ‘

16-bits  9-bits jl 9-bits  9-bits 12-bits.

entries
e 2°+8=4KiB node Four-level
— the level 2 page table node have 2° page
entries table!!
e 2°x8=4KiB node
— the level 3 page table node have 2°
entries @
e 2°x8=4KiB node
— the !evel 4 page table node have 2° ‘ ‘ framett ‘ offset ‘
entries
« 2948 =4KiB node 12-bits 40-bits 12-bits
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Intel 4-Level Page Tables

—

Figure 4-8. Linear-Address Translation 1o a 4-KByte Page using 4-Level Paging
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Alternative: Inverted Page Table
PID VPN  offset

T ]
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Index| PID | VPN ctrl| next

Hash Anchor Table
(HAT)

O WN O

IPT: entry for each physical frame
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Alternative: Inverted Page Table

PID VPN offset

o[ 06 [0x123]
05

Index| PID | VPN ctrl | next
Hash Anchor Table 0
(HAT) 1
@ —21 | OxIA 0x40C
0x40C] 0 | 0x5 0x0 !
> 0x40D

ppn offset
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Inverted Page Table (IPT)

* “Inverted page table” is an array of page
numbers sorted (indexed) by frame number (it's
a frame table).

 Algorithm
— Compute hash of page number
— Extract index from hash table
— Use this to index into inverted page table
— Match the PID and page number in the IPT entry

— If match, use the index value as frame # for
translation

— If no match, get next candidate IPT entry from chain
field

— If NULL chain entry = page fault
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Properties of IPTs

* IPT grows with size of RAM, NOT virtual address space

» Frame table is needed anyway (for page replacement,
more later)

» Need a separate data structure for non-resident pages

» Saves a vast amount of space (especially on 64-bit
systems)

» Used in some IBM and HP workstations

Given n processes

* how many page tables will the system
have for
—‘normal’ page tables
—inverted page tables?
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Another look at sharing...

Proc 1 Address

Two (or more)
processes
running the

same program
and sharing

the text section
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Improving the IPT: Hashed
Page Table

* Retain fast lookup of IPT
— A single memory reference in best case
* Retain page table sized based on physical
memory size (not virtual)
— Enable efficient frame sharing
— Support more than one mapping for same frame
+ Key addition: adding frame number to HPT entry
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Hashed Page Table

PID VPN offset

mOW
T ] “one me

[

Best”

HPT: Frame number stored in table
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Hashed Page Table

PID VPN offset

0[ 06 [0:123]
05

PID | VPN PEN |ctrl| next
. 1
2
3 0 0x5 0x42 0x0 +
4
5
6 1 0x1A  |0x13 0x3
ppn offset

[ ox42 [0x123]

Sharing Example

PID VPN offset

o[ 06 [0:123]
05

PID | VPN PEN |ctrl| next
. :
2
3 1 0x5 0x42 0x0
4
5
5 0 0x5 0x42 0x3
ppn offset

oxéz_[0x123]
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Sizing the Hashed Page Table

* HPT sized based on physical memory size

» With sharing
— Each frame can have more than one PTE
— More sharing increases number of slots used
« Increases collision likelihood
* However, we can tune HPT size based on:
« Physical memory size

« Expected sharing
« Hash collision avoidance.

— HPT a power of 2 multiple of number of physical
memory frame
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VM Implementation Issue

» Performance?
— Each virtual memory reference can cause two
physical memory accesses
« One to fetch the page table entry
« One to fetch/store the data
=Intolerable performance impact!!

+ Solution:
— High-speed cache for page table entries (PTEs)
« Called a translation look-aside buffer (TLB)
« Contains recently used page table entries
« Associative, high-speed memory, similar to cache memory
* May be under OS control (unlike memory cache)
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e | | 1LB ti
hardware operaton
device!!l
. Secondary
Virtual Address Main Memory Memory
Page # | Offset ~")
[
“Translation
Lookaside Buffer
4
» TLB hit —
b }
»
Data
4 structure
Page/tabte | = .
in main
memol
TLB miss Ty N

|

Frame # Offset

Real Address

Page fault

S

Translation Lookaside Buffer

» Given a virtual address, processor examines the
TLB

+ If matching PTE found (TLB hit), the address is
translated

» Otherwise (TLB miss), the page number is used

to index the process’s page table
— If PT contains a valid entry, reload TLB and restart
— Otherwise, (page fault) check if page is on disk

« If on disk, swap itin
« Otherwise, allocate a new page or raise an exception
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TLB properties

» Page table is (logically) an array of frame
numbers

» TLB holds a (recently used) subset of PT entries

— Each TLB entry must be identified (tagged) with the
page # it translates
— Access is by associative lookup:
« All TLB entries’ tags are concurrently compared to the page #
« TLB is associative (or content-addressable) memory

page # | frame # |V | W
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TLB properties
+ TLB may or may not be under direct OS control
— Hardware-loaded TLB

« On miss, hardware performs PT lookup and reloads TLB
« Example: x86, ARM

— Software-loaded TLB

« On miss, hardware generates a TLB miss exception, and
exception handler reloads TLB

« Example: MIPS, Itanium (optionally)
« TLB size: typically 64-128 entries

» Can have separate TLBs for instruction fetch
and data access

* TLBs can also be used with inverted page tables
(and others)
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TLB and context switching

» TLB is a shared piece of hardware
+ Normal page tables are per-process (address space)
» TLB entries are process-specific
— On context switch need to flush the TLB (invalidate all
entries)
« high context-switching overhead (Intel x86)
— or tag entries with address-space ID (ASID)
« called a tagged TLB
« used (in some form) on all modern architectures
« TLB entry: ASID, page #, frame #, valid and write-protect bits
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TLB effect

» Without TLB

— Average number of physical memory
references per virtual reference
=2
» With TLB (assume 99% hit ratio)

— Average number of physical memory
references per virtual reference
=.99*1+0.01*2
=1.01
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Recap - Simplified Components of

Virtual Address Spaces V M SySte rTlage Tables for 3
(3 processes) processes
Frame Table
1 J
N I ~
D
AW ‘
W A
CPU
TLB
AR
Frame Pool
Physical Memory
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Recap - Simplified Components of
VM System

Virtual Address Spaces
(3 processes)
Inverted Page

Frame Pool

Physical Memory
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Virtual Address Spaces
(3 processes)

N
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Recap - Simplified Components of
VM System

Hashed Page

Frame Table

7

I

Frame Pool

Physical Memory
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MIPS R3000 TLB

3 12 1l

6 5

| VPN

| ASID | 0

EntryHi Register (TLB key fields)

+ D = Dirty = Write protect :
* G = Global (ignore ASID
in lookup)

N
?@\f ©
'ﬂ::; o‘\'&\\%
CPU__ | __—
TLB
=
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R3000 Address
Space Layout

* ksegO:
— 512 megabytes
— Fixed translation window to
physical memory
« 0x80000000 - OxOfffffff virtual =
0x00000000 - Ox1fffffff physical
* TLB not used
Cacheable
Only kernel-mode accessible
— Usually where the kernel code
and data is placed

(53333333

0xC0000000

0xA0000000

0x80000000

Physical Memory

0x00000000

kuseg

31 12 n w9 8 7
|PFN |N |D |V|G|O
EntryLo Register (TLB data fields)
* N = Not cacheable + V= valid bit

64 TLB entries

Accessed via software through
Cooprocessor 0 registers
— EntryHi and EntryLo
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R3000 Address
Space Layout

* kuseg:
— 2 gigabytes
— TLB translated (mapped)
— Cacheable (depending on ‘N’ bit)
— user-mode and kernel mode
accessible
Page size is 4K

THE UNIVERSITY OF
NEW SOUTH WALES
===l

R3000 Address
Space Layout

— Switching processes
switches the translation
(page table) for kuseg

Proc 2
kuseg

Proc 1
kuseg

OXFFFFFFFF

0xC000000

0xA0000000,

0x80000000

0x00000000

Proc 3
kuseg

OXFFFFFFFF

0xC000000

0xA0000000

0x80000000

kuseg

0x00000000
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R3000 Address
Space Layout

+ kseg1:
— 512 megabytes
— Fixed translation window to
physical memory
+ 0xa0000000 - Oxbfffffff virtual =
0x00000000 - Ox1fffffff physical

» TLB not used

— NOT cacheable

— Only kernel-mode accessible

— Where devices are accessed (and
boot ROM)

OxffEEFEEE

0xC0000000

0x80000000

Physical Memory

53
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0x00000000




