Cohesive Subgraph Computation over Large Graphs

Lijun Chang
DECRA Fellow @ Database Group
CSE, UNSW

Lijun
Outline

- Introduction
- Core Decomposition
- Truss Decomposition
- Edge-connectivity based Decomposition
- Maximal Clique Enumeration
- Graph Structural Clustering
Graphs

- Graphs are everywhere
Big Graphs

Graphs are Big (Volume)

- 1.4 billion users in 2014
- 0.4 trillion relationships in 2014
- 302 million monthly active users
- 208 followers on average
- 2.1 billion webpages in 2000
- 15 billion edges in 2000
- 20 PB data/day in 2008
Properties of Real-world Graphs

- Real graphs are not *random graphs* (e.g., the Erdos-Renyi random graph model)
- have fascinating patterns and properties.
 - The *degree distribution* is skewed, following a power-law
 - The *average distance* is short (the small-world phenomenon)
 - *Edge density* is inhomogeneous - groups of vertices with high concentration of edges within them and low concentration between different groups
 - Globally sparse but locally dense
Cohesive Subgraph Computation

- Aims to identify the modules and, possibly, their hierarchical organization, by only using the information encoded in the graph topology.
- First attempt dates back to 1955 by Weiss and Jacobson searching for work groups within a government agency.
- Applications in various fields
 - Any context that information is encoded as a graph
Application domains

- Communities in *social networks*
- Groups of web pages dealing with the same or related topics in *World Wide Web*
- Groups of proteins having the same specific function within the cell in *biology*

- Related to functional modules such as cycles and pathways in *metabolic networks*
- Identify compartments in *food webs*
Cohesiveness Measures

- Minimum degree: **core decomposition**
- Minimum number of triangles each participates in: **truss decomposition**
- Edge connectivity: **edge connectivity-based decomposition**
- Clique: **maximal clique enumeration**
- Structural graph clustering
- …
Outline

- Introduction
- Core Decomposition
- Truss Decomposition
- Edge-connectivity based Decomposition
- Maximal Clique Enumeration
- Graph Structural Clustering
Core Decomposition

- **k-core**
 - The largest subgraph in which every vertex has degree at least k within the subgraph

Example:
- Core number $c_1 = 1$
- Core number $c_1 = 2$
- Core number $c_1 = 3$

Graph Degeneracy $\delta^*(G) = 3$

- $G_0 = G$
- $G_1 = 1$-core of G
- $G_2 = 2$-core of G
- $G_3 = 3$-core of G

Important property:
- Fast and easy to compute
- Linear to the size of the graph
- Scalable to large scale graphs

Note:
The degeneracy and the size of the k-core provide a good indication of the cohesiveness of the graph

Picture taken from Malliaros et al. 2016
Core Decomposition

- Another Example

Picture taken from Malliaros et al. 2016
Peeling Algorithm

- **Basic idea**
 - Iteratively remove the weakest vertex (i.e., the one with the smallest degree)

0-core
- remove v6

1-core
- remove v1

2-core (also the max-core)
- If we remove another vertex, the graph collapses.

Picture taken from Malliaros et al. 2016
Time complexity

- Linear to the number of edges (i.e., $O(m)$)
- use a bin-sort like data structure to dynamically maintain the vertex with the smallest degree
Linear Time Algorithm

Picture taken from Malliaros et al. 2016
Linear Time Algorithm

The removal of node 9 leads to decreasing the degree of node 7.
Linear Time Algorithm

The removal of node 9 leads to decreasing the degree of node 7

Node 7 must change bin
Linear Time Algorithm

The removal of node 9 leads to decreasing the degree of node 7.

Picture taken from Malliaros et al. 2016
Linear Time Algorithm

The removal of node 9 leads to decreasing the degree of node 7
For Speeding Up Algorithms

- Densest subgraph detection
 - 2-approximation of the densest subgraph. Density is the average degree
 - prune vertices that are not in the densest subgraph, thus speed up the algorithm

- K-edge connected component computation.
 - A k-edge connected component is a subgraph of a k-core
Influential Spreaders

Most efficient spreaders are located within the k-core of the network

Outline

- Introduction
- Core Decomposition
- Truss Decomposition
- Edge-connectivity based Decomposition
- Maximal Clique Enumeration
- Graph Structural Clustering
Truss Decomposition

- K-core decomposition often returns a relatively large number of candidate influential spreaders.
 - Only a small fraction corresponds to truly highly influential vertices.
- k-truss decomposition further refines the set of the most influential vertices.
Truss Decomposition

- **K-truss**
 - The maximal subgraph in which every edge participates in \(k-2 \) triangles

Picture taken from Rossi et al. 2015
K-truss vs k-core

- k-truss is a subgraph of $(k-1)$-core
- k-truss represents the nucleus of a k-core filtering out less important information

Picture taken from Rossi et al. 2015
Truss Decomposition Algorithm

- Extend the peeling algorithm, which is designed for core decomposition, to truss decomposition
 - That is, virtually transform the graph G to a new graph G'
 - Each edge (u,v) in G corresponds to a vertex in G'
 - Two vertices in G' are connected by an edge if 1) their corresponding edges in G have one common vertex, and 2) the three vertices of the two corresponding edges form a triangle in G

- The algorithms runs in $O(\alpha(G) \times m)$ time
 - $\alpha(G)$ is the arboricity of G, and is small for real graphs
Outline

- Introduction
- Core Decomposition
- Truss Decomposition
- Edge-connectivity based Decomposition
- Maximal Clique Enumeration
- Graph Structural Clustering
A graph is k-edge connected if it is still connected after removing any set of $(k-1)$ edges from it.

2-edge connected
k-edge Connected Components

- Given a graph G and an integer k, computing all maximal subgraphs of G that are k-edge connected.
Observation

- A graph is not k-edge connected, iff \(\exists \) a set C of edges \(|C| < k\) whose removal disconnects the graph.

Example: the above graph is not 3-edge connected: cut \{(9,11), (5,12)\}
Algorithm

- Given a graph G and an integer k
 - If G is not k-edge connected, find a cut C with cardinality $< k$
 - Remove edges in C from G, then the result will be two connected subgraphs
 - Find k-edge connected components for each connected subgraph
 - Otherwise, report that this subgraph is a k-edge connected component
Example (k=3)
Optimizations

- Optimizations [Chang et al. SIGMOD’13]
 - k-core pruning
 - Find multiple cuts at the same time
 - Fast compute a cut

- The time complexity of computing k-edge connected components is $O(h*l*|E|)$
 - h and l are bounded small constants
Edge-connectivity based decomposition

[Chang et al. SIGMOD’15]

- **Compute** $sc(u, v)$ for all edges (u, v) in the graph.
 - $sc(u, v)$: the maximum k such that a k-edge connected component containing edge (u, v)

- Use the existing techniques for computing k-edge connected component with two optimizations.
 - **Batch processing:** assign $sc(u, v)$ values for all edges in k-edge connected components
 - **Computation sharing:** all edges removed during computing k-edge connected components are also removed when computing $(k+1)$-edge connected components

Time complexity: $O(\alpha(G) \times h \times l \times |E|)$, where $\alpha(G)$ is the arboricity of a graph G.

Outline

- Introduction
- Core Decomposition
- Truss Decomposition
- Edge-connectivity based Decomposition
- Maximal Clique Enumeration
- Graph Structural Clustering
Maximal Clique Enumeration

Algorithmica’13: Fast Maximal Clique Enumeration in Sparse Graphs
Backtracking Algorithm

- Compute the Maximum Clique is NP-hard
- Backtracking
 - starting with a vertex $C = \{u\}$ and all its neighbors as the candidate P
 - Recursively add a vertex from P to C, and reduce P to the subset that are adjacent to all vertices of C
 - A maximal clique is found if P is empty
- A clique is contained in the neighborhood-subgraph of a vertex
 - In practice, the maximum clique can also be found efficiently for real graphs
Outline

- Introduction
- Core Decomposition
- Truss Decomposition
- Edge-connectivity based Decomposition
- Maximal Clique Enumeration
- Graph Structural Clustering
Structural Graph Clustering

- Structural graph clustering: SCAN [Xu+, KDD’07]
 - Identifies clusters, hubs, and outliers at the same time
 - Mimics DBSCAN [Ester+, KDD’96] for clustering spatial data

![Example structural graph clustering](image)
A Cluster = Cores + Borders

Core: vertices that are structure-similar to many other vertices
Border: vertices that are not core but are structure-similar to a core

Structural Similarity: \[\sigma(u, v) = \frac{|N[u] \cap N[v]|}{\sqrt{d[u] \cdot d[v]}}. \]

- Two vertices \(u \) and \(v \) are structure-similar if
 - Connected
 - Structural similarity \(\geq \varepsilon \) (a given similarity threshold)
 - Many: \(\geq \mu \) (a given size threshold)
Example ($\varepsilon=0.0001$, $\mu=3$)
pSCAN (Chang et al. ICDE’17)

- A two-step framework + optimization techniques
 - **Step-I:** Cluster core vertices
 - Transitivity: if core u and core v are in the same cluster, core v and core w are in the same cluster, then core u and core w are in the same cluster
 - Reduces the number of structural similarity computations
 - **Step-II:** Cluster non-core vertices
 - A non-core vertex belongs to the same cluster of a set of core vertices if it is structure-similar to one of the core vertices
- Time complexity is $O(\alpha(G) \times m)$
- pSCAN is worst-case optimal
Wrap up

- Introduction
- Core Decomposition
- Truss Decomposition
- Edge-connectivity based Decomposition
- Maximal Clique Enumeration
- Graph Structural Clustering
Thank you!

Questions?

ljchang@cse.unsw.edu.au