Skip Lists
A recent data structure - introduced in 1989 by William Pugh.

Yes, I know, it is recent for people of my age, not at all recent for you ...

A randomised data structure with benefits of balanced trees (e.g., AVL or Red - Black trees):
- $O(\log n)$ expected time for INSERT and SEARCH;
- $O(1)$ time for MIN, MAX, SUCC, PRED;
- Can be enhanced so that finding the k^{th} element in the list also runs in $O(\log n)$ time.

Much easier to code and in practice also tend to be faster and use less space than balanced trees.

Skip Lists have replaced balanced trees in many applications.
A recent data structure - introduced in 1989 by William Pugh.

Yes, I know, it is recent for people of my age, not at all recent for you ...

A randomised data structure with benefits of balanced trees (e.g., AVL or Red - Black trees):
- $O(\log n)$ expected time for INSERT and SEARCH;
- $O(1)$ time for MIN, MAX, SUCC, PRED;
- Can be enhanced so that finding the k^{th} element in the list also runs in $O(\log n)$ time.

Much easier to code and in practice also tend to be faster and use less space than balanced trees.

Skip Lists have replaced balanced trees in many applications.
● A recent data structure - introduced in 1989 by William Pugh.
● Yes, I know, it is recent for people of my age, not at all recent for you ...
● A randomised data structure with benefits of balanced trees (e.g., AVL or Red - Black trees):
 ● $O(\log n)$ expected time for INSERT and SEARCH;
 ● $O(1)$ time for MIN, MAX, SUCC, PRED;
 ● Can be enhanced so that finding the k^{th} element in the list also runs in $O(\log n)$ time.
● Much easier to code and in practice also tend to be faster and use less space than balanced trees.
● Skip Lists have replaced balanced trees in many applications.
A recent data structure - introduced in 1989 by William Pugh.

Yes, I know, it is recent for people of my age, not at all recent for you ...

A randomised data structure with benefits of balanced trees (e.g., AVL or Red - Black trees):

- $O(\log n)$ expected time for \texttt{INSERT} and \texttt{SEARCH};
- $O(1)$ time for \texttt{MIN}, \texttt{MAX}, \texttt{SUCC}, \texttt{PRED};
- Can be enhanced so that finding the k^{th} element in the list also runs in $O(\log n)$ time.

Much easier to code and in practice also tend to be faster and use less space than balanced trees.

Skip Lists have replaced balanced trees in many applications.
A recent data structure - introduced in 1989 by William Pugh.

Yes, I know, it is recent for people of my age, not at all recent for you ...

A randomised data structure with benefits of balanced trees (e.g., AVL or Red - Black trees):

- $O(\log n)$ expected time for \texttt{INSERT} and \texttt{SEARCH};
- $O(1)$ time for \texttt{MIN}, \texttt{MAX}, \texttt{SUCC}, \texttt{PRED};
- Can be enhanced so that finding the k^{th} element in the list also runs in $O(\log n)$ time.

Much easier to code and in practice also tend to be faster and use less space than balanced trees.

Skip Lists have replaced balanced trees in many applications.
Skip Lists

- A recent data structure - introduced in 1989 by William Pugh.
- Yes, I know, it is recent for people of my age, not at all recent for you ...
- A randomised data structure with benefits of balanced trees (e.g., AVL or Red-Black trees):
 - $O(\log n)$ expected time for **INSERT** and **SEARCH**;
 - $O(1)$ time for **MIN**, **MAX**, **SUCC**, **PRED**;
 - Can be enhanced so that finding the k^{th} element in the list also runs in $O(\log n)$ time.
- Much easier to code and in practice also tend to be faster and use less space than balanced trees.
- Skip Lists have replaced balanced trees in many applications.
Skip Lists

- A recent data structure - introduced in 1989 by William Pugh.
- Yes, I know, it is recent for people of my age, not at all recent for you ...
- A randomised data structure with benefits of balanced trees (e.g., AVL or Red - Black trees):
 - $O(\log n)$ **expected** time for **INSERT** and **SEARCH**;
 - $O(1)$ time for **MIN**, **MAX**, **SUCCESSION**, **PREDECESSOR**;
 - Can be enhanced so that finding the k^{th} element in the list also runs in $O(\log n)$ time.
- Much easier to code and in practice also tend to be faster and use less space than balanced trees.
- Skip Lists have replaced balanced trees in many applications.
Skip Lists

- A recent data structure - introduced in 1989 by William Pugh.
- Yes, I know, it is recent for people of my age, not at all recent for you ...
- A randomised data structure with benefits of balanced trees (e.g., AVL or Red - Black trees):
 - $O(\log n)$ expected time for \textsc{insert} and \textsc{search};
 - $O(1)$ time for \textsc{min}, \textsc{max}, \textsc{succ}, \textsc{pred};
 - Can be enhanced so that finding the k^{th} element in the list also runs in $O(\log n)$ time.
- Much easier to code and in practice also tend to be faster and use less space than balanced trees.
- Skip Lists have replaced balanced trees in many applications.
Skip Lists

- Consider a doubly linked list:

- \(\text{MIN, MAX, SUCC, PRED} \) run in time \(O(1) \).
- However, \(\text{SEARCH, INSERT, DELETE} \) run in time \(O(n) \).
- The culprit is searching.
- Can we modify doubly linked links to make search \(O(\log n) \) expected time?
- **Idea:** make shortcuts on several levels:

This is something like the express elevators in skyscrapers which do not stop on every floor.
Skip Lists

- Consider a doubly linked list:

- **Min, Max, Succ, Pred** run in time $O(1)$.
- However, **Search, Insert, Delete** run in time $O(n)$.
- The culprit is searching.
- Can we modify doubly linked links to make search $O(\log n)$ expected time?
- **Idea:** make shortcuts on several levels:

- This is something like the express elevators in skyscrapers which do not stop on every floor.
Skip Lists

- Consider a doubly linked list:

- Min, Max, Succ, Pred run in time $O(1)$.
- However, Search, Insert, Delete run in time $O(n)$.
- The culprit is searching.
- Can we modify doubly linked links to make search $O(\log n)$ expected time?
- Idea: make shortcuts on several levels:

This is something like the express elevators in skyscrapers which do not stop on every floor.
Skip Lists

- Consider a doubly linked list:

- \textbf{Min, Max, Succ, Pred} run in time $O(1)$.
- However, \textbf{Search, Insert, Delete} run in time $O(n)$.
- The culprit is searching.
- Can we modify doubly linked links to make search $O(\log n)$ expected time?
- \textbf{Idea:} make shortcuts on several levels:

This is something like the express elevators in skyscrapers which do not stop on every floor.
Skip Lists

- Consider a doubly linked list:

 ![Diagram of a doubly linked list]

 - **Min**, **Max**, **Succ**, **Pred** run in time $O(1)$.
 - However, **Search**, **Insert**, **Delete** run in time $O(n)$.
 - The culprit is searching.
 - Can we modify doubly linked links to make search $O(\log n)$ expected time?

 Idea: make shortcuts on several levels:

 ![Diagram of skip lists]

 - This is something like the express elevators in skyscrapers which do not stop on every floor.
Skip Lists

- Consider a doubly linked list:

- **Min**, **Max**, **Succ**, **Pred** run in time $O(1)$.
- However, **Search**, **Insert**, **Delete** run in time $O(n)$.
- The culprit is searching.
- Can we modify doubly linked links to make search $O(\log n)$ expected time?
- **Idea:** make shortcuts on several levels:

This is something like the express elevators in skyscrapers which do not stop on every floor.
Consider a doubly linked list:

- **Min, Max, Succ, Pred** run in time $O(1)$.
- However, **Search, Insert, Delete** run in time $O(n)$.
- The culprit is searching.
- Can we modify doubly linked links to make search $O(\log n)$ expected time?

Idea: make shortcuts on several levels:

This is something like the express elevators in skyscrapers which do not stop on every floor.
Skip Lists

- Consider a doubly linked list:

- **Min, Max, Succ, Pred** run in time $O(1)$.
- However, **Search, Insert, Delete** run in time $O(n)$.
- The culprit is searching.
- Can we modify doubly linked links to make search $O(\log n)$ expected time?
- **Idea:** make shortcuts on several levels:

- This is something like the express elevators in skyscrapers which do not stop on every floor.
Searching for k:

Start from the head H and go as far right as you can, without exceeding k, using the highest possible level of links;
then drop one level down and repeat the procedure using lower level links.

How can we ensure such a search procedure runs in time $O(\log n)$?
Can we link every other link on the second level, every fourth link on the third level, every eight on the fourth level and so on...
Searching for k:

- Start from the head H and go as far right as you can, without exceeding k, using the highest possible level of links; then drop one level down and repeat the procedure using lower level links.

- How can we ensure such a search procedure runs in time $O(\log n)$?

- Can we link every other link on the second level, every fourth link on the third level, every eight on the fourth level and so on...
Skip Lists

- Searching for k:

 Start from the head H and go as far right as you can, without exceeding k, using the highest possible level of links;
 then drop one level down and repeat the procedure using lower level links.

- How can we ensure such a search procedure runs in time $O(\log n)$?
 Can we link every other link on the second level, every fourth link on the third level, every eight on the fourth level and so on...
Skip Lists

- Searching for \(k \):

 Start from the head \(H \) and go as far right as you can, without exceeding \(k \), using the highest possible level of links; then drop one level down and repeat the procedure using lower level links.

- How can we ensure such a search procedure runs in time \(O(\log n) \)?

 Can we link every other link on the second level, every fourth link on the third level, every eight on the fourth level and so on...
Skip Lists

- Searching for k:

 - Start from the head H and go as far right as you can, without exceeding k, using the highest possible level of links;
 - then drop one level down and repeat the procedure using lower level links.

 How can we ensure such a search procedure runs in time $O(\log n)$?
 Can we link every other link on the second level, every fourth link on the third level, every eight on the fourth level and so on...
Problem: insertions and deletions will destroy such a structure...
We need dynamically self balancing structure.
This is where randomisation comes into play, ensuring that in the long run the structure remains (essentially) balanced.

To Insert k: first search to find the right place. Then toss a coin until you get a head, and count the number of tails t that you got. Insert k and link it at levels $0 - t$ from the bottom up.
Problem: insertions and deletions will destroy such a structure...
We need dynamically self balancing structure.
This is where randomisation comes into play, ensuring that in the long run the structure remains (essentially) balanced.

To Insert \(k \): first search to find the right place. Then toss a coin until you get a head, and count the number of tails \(t \) that you got.
Insert \(k \) and link it at levels \(0 - t \) from the bottom up.
Skip Lists

- Problem: insertions and deletions will destroy such a structure...
- We need dynamically self balancing structure.
- This is where randomisation comes into play, ensuring that in the long run the structure remains (essentially) balanced.

To Insert k: first search to find the right place. Then toss a coin until you get a head, and count the number of tails t that you got. Insert k and link it at levels $0 - t$ from the bottom up.
Skip Lists

- Problem: insertions and deletions will destroy such a structure...
- We need dynamically self balancing structure.
- This is where randomisation comes into play, ensuring that in the long run the structure remains (essentially) balanced.

To Insert k: first search to find the right place. Then toss a coin until you get a head, and count the number of tails t that you got. Insert k and link it at levels $0 - t$ from the bottom up.
Skip Lists

- Problem: insertions and deletions will destroy such a structure...
- We need dynamically self balancing structure.
- This is where randomisation comes into play, ensuring that in the long run the structure remains (essentially) balanced.

To Insert k: first search to find the right place. Then toss a coin until you get a head, and count the number of tails t that you got. Insert k and link it at levels $0 - t$ from the bottom up.
Skip Lists

- Problem: insertions and deletions will destroy such a structure...
- We need dynamically self balancing structure.
- This is where randomisation comes into play, ensuring that in the long run the structure remains (essentially) balanced.

To Insert \(k \): first search to find the right place. Then toss a coin until you get a head, and count the number of tails \(t \) that you got.

Insert \(k \) and link it at levels \(0 - t \) from the bottom up.
Deleting an element is just like in a standard doubly linked list, but taking care of all pointers affected.

How fast can we search for an element?

The probability of getting i consecutive tails when flipping a coin i times is $1/2^i$.

Thus, an element has links on levels $0 - i$ (and possibly also on higher levels) with probability $1/2^i$.

If n elements belong to a set with a probability p each, then the expected size of that set is np.

Thus, an n element Skip List has on average $n/2^i$ elements with links on level i.

Since an element has links only on levels $0 - i$ with probability $1/2^{i+1}$, the total expected number of link levels per element is

$$
\sum_{i=0}^{\infty} \frac{i + 1}{2^{i+1}} = \sum_{i=1}^{\infty} \frac{i}{2^i} = 2
$$
Deleting an element is just like in a standard doubly linked list, but taking care of all pointers affected.

How fast can we search for an element?
- The probability of getting i consecutive tails when flipping a coin i times is $1/2^i$.
- Thus, an element has links on levels $0 - i$ (and possibly also on higher levels) with probability $1/2^i$.
- If n elements belong to a set with a probability p each, then the expected size of that set is $n p$.
- Thus, an n element Skip List has on average $n/2^i$ elements with links on level i.
- Since an element has links only on levels $0 - i$ with probability $1/2^{i+1}$, the total expected number of link levels per element is

$$\sum_{i=0}^{\infty} \frac{i + 1}{2^{i+1}} = \sum_{i=1}^{\infty} \frac{i}{2^i} = 2$$
Deleting an element is just like in a standard doubly linked list, but taking care of all pointers affected.

How fast can we search for an element?

The probability of getting i consecutive tails when flipping a coin i times is $1/2^i$.

Thus, an element has links on levels $0 - i$ (and possibly also on higher levels) with probability $1/2^i$.

If n elements belong to a set with a probability p each, then the expected size of that set is np.

Thus, an n element Skip List has on average $n/2^i$ elements with links on level i.

Since an element has links only on levels $0 - i$ with probability $1/2^{i+1}$, the total expected number of link levels per element is

$$\sum_{i=0}^{\infty} \frac{i+1}{2^{i+1}} = \sum_{i=1}^{\infty} \frac{i}{2^i} = 2$$
Deleting an element is just like in a standard doubly linked list, but taking care of all pointers affected.

How fast can we search for an element?

The probability of getting \(i \) consecutive tails when flipping a coin \(i \) times is \(\frac{1}{2^i} \).

Thus, an element has links on levels \(0 - i \) (and possibly also on higher levels) with probability \(\frac{1}{2^i} \).

If \(n \) elements belong to a set with a probability \(p \) each, then the expected size of that set is \(n \cdot p \).

Thus, an \(n \) element Skip List has on average \(\frac{n}{2^i} \) elements with links on level \(i \).

Since an element has links only on levels \(0 - i \) with probability \(\frac{1}{2^{i+1}} \), the total expected number of link levels per element is

\[
\sum_{i=0}^{\infty} \frac{i + 1}{2^{i+1}} = \sum_{i=1}^{\infty} \frac{i}{2^i} = 2
\]
• **Deleting** an element is just like in a standard doubly linked list, but taking care of all pointers affected.

• How fast can we search for an element?

• The probability of getting \(i \) consecutive tails when flipping a coin \(i \) times is \(1/2^i \).

• Thus, an element has links on levels \(0 - i \) (and possibly also on higher levels) with probability \(1/2^i \).

• If \(n \) elements belong to a set with a probability \(p \) each, then the expected size of that set is \(np \).

• Thus, an \(n \) element Skip List has on average \(n/2^i \) elements with links on level \(i \).

• Since an element has links only on levels \(0 - i \) with probability \(1/2^{i+1} \), the total **expected** number of link levels per element is

\[
\sum_{i=0}^{\infty} \frac{i + 1}{2^{i+1}} = \sum_{i=1}^{\infty} \frac{i}{2^i} = 2
\]
Deleting an element is just like in a standard doubly linked list, but taking care of all pointers affected.

How fast can we search for an element?

The probability of getting \(i \) consecutive tails when flipping a coin \(i \) times is \(1/2^i \).

Thus, an element has links on levels \(0 - i \) (and possibly also on higher levels) with probability \(1/2^i \).

If \(n \) elements belong to a set with a probability \(p \) each, then the expected size of that set is \(np \).

Thus, an \(n \) element Skip List has on average \(n/2^i \) elements with links on level \(i \).

Since an element has links only on levels \(0 - i \) with probability \(1/2^{i+1} \), the total expected number of link levels per element is

\[
\sum_{i=0}^{\infty} \frac{i+1}{2^{i+1}} = \sum_{i=1}^{\infty} \frac{i}{2^i} = 2
\]
Skip Lists

- **Deleting** an element is just like in a standard doubly linked list, but taking care of all pointers affected.
- How fast can we search for an element?
- The probability of getting i consecutive tails when flipping a coin i times is $1/2^i$.
- Thus, an element has links on levels $0 - i$ (and possibly also on higher levels) with probability $1/2^i$.
- If n elements belong to a set with a probability p each, then the expected size of that set is $n \cdot p$.
- Thus, an n element Skip List has on average $n/2^i$ elements with links on level i.
- Since an element has links only on levels $0 - i$ with probability $1/2^{i+1}$, the total **expected** number of link levels per element is

$$\sum_{i=0}^{\infty} \frac{i + 1}{2^{i+1}} = \sum_{i=1}^{\infty} \frac{i}{2^i} = 2$$
Let \(\#(i) \) denote the number of elements on level \(i \).

Since the expected number of elements having a link at level \(i \) is \(E[\#(i)] = \frac{n}{2^i} \), by the Markov inequality the probability of having at least one element at level \(i \) satisfies

\[
P(\#(i) \geq 1) \leq \frac{E[\#(i)]}{1} = \frac{n}{2^i}
\]

Thus, the probability to have an element on level \(2 \log n \) is smaller than \(\frac{n}{2^{2 \log n}} = \frac{n}{2^{\log n^2}} = \frac{n}{n^2} = 1/n \).

More generally, the probability to have an element on level \(k \log n \) is smaller than \(\frac{n}{2^{k \log n}} = \frac{n}{2^{\log n^k}} = \frac{n}{n^k} = 1/n^{k-1} \).

Thus, the probability that level \(k \log n \) is nonempty is smaller than \(1/n^{k-1} \).

What is the expected value \(E \) of \(k \) such that \(k \) is the least integer so that the number of levels is \(\leq k \log n \)?
Let \(\#(i) \) denote the number of elements on level \(i \).

Since the expected number of elements having a link at level \(i \) is \(E[\#(i)] = \frac{n}{2^i} \), by the Markov inequality the probability of having at least one element at level \(i \) satisfies

\[
P(\#(i) \geq 1) \leq \frac{E[\#(i)]}{1} = \frac{n}{2^i}
\]

Thus, the probability to have an element on level \(2 \log n \) is smaller than \(n/2^{2\log n} = n/2^{\log n^2} = n/n^2 = 1/n \).

More generally, the probability to have an element on level \(k \log n \) is smaller than \(n/2^{k\log n} = n/2^{\log n^k} = n/n^k = 1/n^{k-1} \).

Thus, the probability that level \(k \log n \) is nonempty is smaller than \(1/n^{k-1} \).

What is the expected value \(E \) of \(k \) such that \(k \) is the least integer so that the number of levels is \(\leq k \log n \)?
Skip Lists

- Let \(\#(i) \) denote the number of elements on level \(i \).
- Since the expected number of elements having a link at level \(i \) is \(E[\#(i)] = \frac{n}{2^i} \), by the Markov inequality the probability of having at least one element at level \(i \) satisfies

\[
P(\#(i) \geq 1) \leq \frac{E[\#(i)]}{1} = \frac{n}{2^i}
\]

- Thus, the probability to have an element on level \(2 \log n \) is smaller than \(n/2^{2 \log n} = n/2^{\log n^2} = n/n^2 = 1/n \).
- More generally, the probability to have an element on level \(k \log n \) is smaller than \(n/2^{k \log n} = n/2^{\log n^k} = n/n^k = 1/n^{k-1} \).
- Thus, the probability that level \(k \log n \) is nonempty is smaller than \(1/n^{k-1} \).
- What is the expected value \(E \) of \(k \) such that \(k \) is the least integer so that the number of levels is \(\leq k \log n \)?
Let \(\#(i) \) denote the number of elements on level \(i \).

Since the expected number of elements having a link at level \(i \) is
\[E[\#(i)] = \frac{n}{2^i}, \]
by the Markov inequality the probability of having at least one element at level \(i \) satisfies
\[P(\#(i) \geq 1) \leq \frac{E[\#(i)]}{1} = \frac{n}{2^i}. \]

Thus, the probability to have an element on level \(2 \log n \) is smaller than
\[n/2^{2\log n} = n/2^{\log n^2} = n/n^2 = 1/n. \]

More generally, the probability to have an element on level \(k \log n \) is smaller than
\[n/2^{k\log n} = n/2^{\log n^k} = n/n^k = 1/n^{k-1}. \]

Thus, the probability that level \(k \log n \) is nonempty is smaller than
\[1/n^{k-1}. \]

What is the expected value \(E \) of \(k \) such that \(k \) is the least integer
so that the number of levels is \(\leq k \log n \)?
Let \(\#(i) \) denote the number of elements on level \(i \).

Since the expected number of elements having a link at level \(i \) is
\(E[\#(i)] = \frac{n}{2^i} \), by the Markov inequality the probability of having at least one element at level \(i \) satisfies
\[
P(\#(i) \geq 1) \leq \frac{E[\#(i)]}{1} = \frac{n}{2^i}
\]

Thus, the probability to have an element on level \(2 \log n \) is smaller than
\[
n/2^{2 \log n} = n/2^{\log n^2} = n/n^2 = 1/n.
\]

More generally, the probability to have an element on level \(k \log n \) is smaller than
\[
n/2^{k \log n} = n/2^{\log n^k} = n/n^k = 1/n^{k-1}.
\]

Thus, the probability that level \(k \log n \) is nonempty is smaller than
\[
1/n^{k-1}.
\]

What is the expected value \(E \) of \(k \) such that \(k \) is the least integer so that the number of levels is \(\leq k \log n \)?
Skip Lists

- Let \(\#(i) \) denote the number of elements on level \(i \).
- Since the expected number of elements having a link at level \(i \) is \(E[\#(i)] = \frac{n}{2^i} \), by the Markov inequality the probability of having at least one element at level \(i \) satisfies
 \[
P(\#(i) \geq 1) \leq \frac{E[\#(i)]}{1} = \frac{n}{2^i}
\]

- Thus, the probability to have an element on level \(2 \log n \) is smaller than \(n/2^{2\log n} = n/2^{\log n^2} = n/n^2 = 1/n \).
- More generally, the probability to have an element on level \(k \log n \) is smaller than \(n/2^{k\log n} = n/2^{\log n^k} = n/n^k = 1/n^{k-1} \).
- Thus, the probability that level \(k \log n \) is nonempty is smaller than \(1/n^{k-1} \).
- What is the expected value \(E \) of \(k \) such that \(k \) is the least integer so that the number of levels is \(\leq k \log n \)?
Skip Lists

\[E \leq \sum_{k=1}^{\infty} \frac{k}{n^k-1} = \left(\frac{n}{n-1} \right)^2 \]

(using the same tricks to evaluate such a sum)

- Thus, the expected number of levels is barely larger than \(\log n \).
- If an element has a link at a level \(i \) then with probability \(1/2 \) it also has a link at level \(i + 1 \).
- Thus, the expected number of elements between any two consecutive elements with a link on level \(i + 1 \) which have links only up to level \(i \) is smaller than

\[
\frac{0}{2} + \frac{1}{2^2} + \frac{2}{2^3} + \frac{3}{2^4} + \ldots = 1
\]

So once on level \(i \), on average we will have to inspect only two elements on that level before going to a lower level.
\[E \leq \sum_{k=1}^{\infty} \frac{k}{n^{k-1}} = \left(\frac{n}{n-1} \right)^2 \]

(using the same tricks to evaluate such a sum)

- Thus, the expected number of levels is barely larger than \(\log n \).
- If an element has a link at a level \(i \) then with probability \(1/2 \) it also has a link at level \(i + 1 \).
- Thus, the expected number of elements between any two consecutive elements with a link on level \(i + 1 \) which have links only up to level \(i \) is smaller than
 \[
 \frac{0}{2} + \frac{1}{2^2} + \frac{2}{2^3} + \frac{3}{2^4} + \ldots = 1
 \]

So once on level \(i \), on average we will have to inspect only two elements on that level before going to a lower level.
Skip Lists

\[E \leq \sum_{k=1}^{\infty} \frac{k}{n^{k-1}} = \left(\frac{n}{n-1} \right)^2 \]

(using the same tricks to evaluate such a sum)

- Thus, the expected number of levels is barely larger than \(\log n \).
- If an element has a link at a level \(i \) then with probability \(1/2 \) it also has a link at level \(i + 1 \).
- Thus, the expected number of elements between any two consecutive elements with a link on level \(i + 1 \) which have links only up to level \(i \) is smaller than

\[
\frac{0}{2} + \frac{1}{2^2} + \frac{2}{2^3} + \frac{3}{2^4} + \ldots = 1
\]

So once on level \(i \), on average we will have to inspect only two elements on that level before going to a lower level.
Skip Lists

\[E \leq \sum_{k=1}^{\infty} \frac{k}{n^{k-1}} = \left(\frac{n}{n-1} \right)^2 \]

(using the same tricks to evaluate such a sum)

- Thus, the expected number of levels is barely larger than \(\log n \).
- If an element has a link at a level \(i \) then with probability \(1/2 \) it also has a link at level \(i + 1 \).
- Thus, the expected number of elements between any two consecutive elements with a link on level \(i + 1 \) which have links only up to level \(i \) is smaller than

\[
\frac{0}{2} + \frac{1}{2^2} + \frac{2}{2^3} + \frac{3}{2^4} + \ldots = 1
\]

So once on level \(i \), on average we will have to inspect only two elements on that level before going to a lower level.
\[
E \leq \sum_{k=1}^{\infty} \frac{k}{n^{k-1}} = \left(\frac{n}{n-1} \right)^2
\]

(using the same tricks to evaluate such a sum)

- Thus, the expected number of levels is barely larger than \(\log n \).
- If an element has a link at a level \(i \) then with probability \(1/2 \) it also has a link at level \(i + 1 \).
- Thus, the expected number of elements between any two consecutive elements with a link on level \(i + 1 \) which have links only up to level \(i \) is smaller than

\[
\frac{0}{2} + \frac{1}{2^2} + \frac{2}{2^3} + \frac{3}{2^4} + \ldots = 1
\]

So once on level \(i \), on average we will have to inspect only two elements on that level before going to a lower level.
To summarise, on average, there will be fewer than $2 \log n$ levels to go down, with visiting on average only two elements per each level.

Consequently, on average, the search will be in time $O(\log n)$.

For an element with links on levels $0 - i$ we have to store $2(i + 1)$ pointers to other elements and the expected number of elements with highest link on level i is $O(n/2^{i+1})$. Thus, total expected space for all pointers does not exceed

$$O \left(\sum_{i=0}^{\infty} 2(i + 1) \frac{n}{2^{i+1}} \right) = O \left(2n \sum_{i=0}^{\infty} \frac{i + 1}{2^{i+1}} \right) = O(4n) = O(n)$$

Unless we must ensure that the worst case performance of search is $O(\log n)$, Skip Lists are a better option than BST.
Skip Lists

- To summarise, on average, there will be fewer than $2 \log n$ levels to go down, with visiting on average only two elements per each level.
- Consequently, on average, the search will be in time $O(\log n)$.
- For an element with links on levels $0 - i$ we have to store $2(i + 1)$ pointers to other elements and the expected number of elements with highest link on level i is $O(n/2^{i+1})$. Thus, total expected space for all pointers does not exceed

$$O \left(\sum_{i=0}^{\infty} 2(i + 1) \frac{n}{2^{i+1}} \right) = O \left(2n \sum_{i=0}^{\infty} \frac{i + 1}{2^{i+1}} \right) = O(4n) = O(n)$$

- Unless we must ensure that the worst case performance of search is $O(\log n)$, Skip Lists are a better option than BST.
Skip Lists

- To summarise, on average, there will be fewer than $2 \log n$ levels to go down, with visiting on average only two elements per each level.
- Consequently, on average, the search will be in time $O(\log n)$.
- For an element with links on levels $0 - i$ we have to store $2(i + 1)$ pointers to other elements and the expected number of elements with highest link on level i is $O(n/2^{i+1})$. Thus, total expected space for all pointers does not exceed

\[
O \left(\sum_{i=0}^{\infty} 2(i + 1) \frac{n}{2^{i+1}} \right) = O \left(2n \sum_{i=0}^{\infty} \frac{i + 1}{2^{i+1}} \right) = O(4n) = O(n)
\]

- Unless we must ensure that the worst case performance of search is $O(\log n)$, Skip Lists are a better option than BST.
To summarise, on average, there will be fewer than $2 \log n$ levels to go down, with visiting on average only two elements per each level.

Consequently, on average, the search will be in time $O(\log n)$.

For an element with links on levels $0 - i$ we have to store $2(i + 1)$ pointers to other elements and the expected number of elements with highest link on level i is $O(n/2^{i+1})$. Thus, total expected space for all pointers does not exceed

$$O \left(\sum_{i=0}^{\infty} 2(i + 1) \frac{n}{2^{i+1}} \right) = O \left(2n \sum_{i=0}^{\infty} \frac{i + 1}{2^{i+1}} \right) = O(4n) = O(n)$$

Unless we must ensure that the worst case performance of search is $O(\log n)$, Skip Lists are a better option than BST.
An improvement of Skip Lists

Homework:

- Note that accessing the k^{th} largest element is still $O(n)$.
- Add something to the structure so that accessing the k^{th} largest element is also $O(\log n)$ expected time.
An improvement of Skip Lists

Homework:

- Note that accessing the k^{th} largest element is still $O(n)$.
- Add something to the structure so that accessing the k^{th} largest element is also $O(\log n)$ expected time.