
1

GUI Programming with
wxHaskell

Wei Tan
<wlta543@cse.unsw.edu.au>

Countdown Alarm Clock

Widgets used
Frame

Panel SpinCtrl

StaticText

Button

Menu

UI Creation Code
-- create main window & container for widgets
f <- frame [text := “Countdown Watch”, clientSize := sz 300 200]
panel <- panel f []

-- create menu
timerMenu <- menuPane [text := “&Timer”]
tstart <- menuItem timerMenu [text := “&Start”]
quit <- menuQuit timerMenu [help := “Quit”]

-- labels
timeLabel <- staticText panel [text := “Time:”, fontWeight :=

WeightBold]

-- spin control
sec <- spinCtrl panel 0 59 [outerSize := sz 35 20]

2

UI Creation Code (cont’d)
-- start/cancel button
startBtn <- button panel [text := “Start”]
set startBtn <- [on command := setAlarm f startBtn hr min sec]

-- layout
set f [layout := column 1 $

[hfill $ hrule 1 -- ruler to separate menu from panel
,fill $ container panel $

margin 10 $ column 10
[hfill $ row 1 -- current time

[widget timeLabel, glue, widget timeStatic],
,hfill $ row 1 -- set alarm interval spinCtrl’s

[widget intvLabel, glue, widget hr, label “:”, ….
,floatBottomRight $ widget startBtn]]] -- start button

What is wxHaskell and what’s so good
about it?

• Haskell binding for wxWidgets

• wxWidgets is a cross-platform GUI library written in C++.
Mature, extensive, actively being developed.

• supports 75% of wxWidgets’ functionality

• wxHaskell is a medium-level library – it offers simple
functional bindings + higher level abstraction (really neat)

Why use wxHaskell?
• Rapid prototyping

• Commercial applications

• Multi-platform support, native look-and-feel

• Integrate with existing Haskell code

• Because we can ☺

Tour of wxHaskell

• Packages
• Controls
• Types & Inheritance
• Events
• Attributes and Properties
• Layout
• Miscellaneous – Db, Timer, Var, OpenGL

3

wxHaskell Packages

• Graphics.UI.WXCore
– Lower level interface to wxWidgets library
– Almost one-to-one mapping between C++ and Haskell

• Graphics.UI.WX
– Built on top of WXCore
– Provides nice functional abstraction (attributes, layout

combinators, etc.)

Controls
p <- panel []

txt <- textEntry p AlignLeft [text := “your name here”]

cb <- comboBox p true [“NSW”, “ACT”, “VIC”, “WA”] []

rd <- radioBox p Horizontal [“one”, “two”]
[on select := logSelection]

Other widgets: Gauge, Choice, ListBox, Slider, TreeCtrl,
SplitterWindow, Toolbar

Types & Inheritance

• Encodes inheritance relationship between different
widget types using ADT

Object (Ptr)
|- ..

.
|- Window

|- Frame
|- Control

|- Button
|- RadioBox

Button a === Ptr (... (CWindow (CControl (CButton a))) ...)

Attributes I

We can control various attributes of widgets, e.g.
caption, colour, font, size, etc.

But what attributes can I use on which widget?

• Attributes are organized into Haskell classes
• Types of widgets instantiate appropriate classes
• Inherit instance definitions from “parent types”

4

Attributes II
Type Frame a = Window (CFrame a)

Frame a instantiates HasImage, Form, Closable, and everything that
Window instantiates

Window a instantiates Textual,Literate,Dimensions,...

The HasImage class defines the ‘image’ attribute,
Textual class defines the ‘text’ attribute.

So, we can:

f <- frame []
set f [text := “Window Title”, image := “/some/image.ico”]

Events
• Organized into Haskell classes (like Attr)
• A widget that instantiates an event class means it can receive

events of that class.
• Event handlers can be defined by turning it into an attribute

using the ‘on’ function:

paint :: (Paint w) => Event w (DC () -> Rect -> IO ())

Window is an instance of Paint, so we can define our own paint routine for all
window types (including buttons and text boxes).

set f [on paint := drawObjects]

Attributes and Properties

Attributes are turned in Properties with (:=)

Prop (Button a) Prop (Button a)
/ \ / \

set btn [text := “Stop”, on command := doSomething]
| | | |

Attr String Event IO ()
(Button a) (Button a)
String (IO ())

set :: forall w. w -> [Prop w] -> IO ()
(:=) :: forall w a. Attr w a -> a -> Prop w
on :: forall a w. Event w a -> Attr w a

Layout
• Manages the positioning and sizing of widgets within a

container widget
• wxHaskell uses layout combinators which allows a more

declarative style of specifying layout
• The return type of a layout combinator is always Layout
• It may take other arguments, often another Layout
• Allows precise control of behavior when window is resized (or

to prevent resizing)
• Types of layout combinators: layouts (widgets, containers,

glue, spacers) and transformers (stretch, expand, margin,
alignment)

5

Layout examples

set f [layout := column 1 $
[hfill $ hrule 1 -- ruler to separate menu from panel
,fill $ container panel $

margin 10 $ column 10
[hfill $ row 1 -- current time

[widget timeLabel, glue, widget timeStatic],
,hfill $ row 1 -- set alarm interval spinCtrl’s

[widget intvLabel, glue, widget hr, label “:”, ….
,floatBottomRight $ widget startBtn]]] -- start button

HPView
• Assignment: Heap Profile Viewer for GHC profiling output.
• Similar to hp2ps utility, but interactive.
• Draws a lot of lines so the mathematical model of Haskell

helps.

Screenshot

HPView screenshot at Milestone2

Round up

• wxHaskell is great!
– script-like GUI creation, speeds up development
– no need to declare variables in IO monad, types

deduced automatically (no need to keep track of
intermediate objects)

– uniform interface for getting/setting properties
– closure for passing vars to event handlers, no

special handling of void * data!

