GUI Programming with
wxHaskell

Wei Tan

<wlta543@cse.unsw.edu.au>

Countdown Alarm Clock
=T e

Tirner

Time: 2:20:45

Interval: ID_ﬁIE_i”D_iI

Start |

Widgets used

Frame Menu StaticText
Il Countdown VWatch =] 4
Tirner
Time: \ 25445
Interval: In_ﬂ|5_i”0_il
Staﬂ\ |
\

Panel SpinCtrl Button

Ul Creation Code

-- create main window & container for widgets
f <- frame [text := “Countdown Watch”, clientSize := sz 300 200]

panel <- panel f []

- create menu

timerMenu <- menuPane [text := “&Timer”]
tstart <- menultem timerMenu [text := “&Start”]
quit <- menuQuit timerMenu [help := “Quit”]
- labels
timeLabel <- staticText panel [text := “Time:”, fontWeight :=
WeightBold]

- spin control
sec <- spinCtrl panel 0 59 [outerSize := sz 35 20]

M 1
: , What is wxHaskell and what’s so good
Ul Creation Code (cont’'d) o
about it”
- start/cancel button
startBtn <- button panel [text := “Start”] i :
set startBtn <- [on command := setAlarm f startBtn hr min sec] * Haskell bmdmg for WXWIdgetS
'tliy‘[’it . - e wxWidgets is a cross-platform GUI library written in C++.
se ayou 1= column H H H
[hfill $ hrule 1 -- ruler to separate menu from panel Mature, extensive, actively being developed.
,fill ¢ container panel $
margin 10 $ column 10 * supports 75% of wxWidgets’ functionality
[hfill $ row 1 -- current time
[widget timelLabel, glue, widget timeStatic],
JhFill $ row 1 -- set alarm interval spinCtrl’s » wxHaskell is a medium-level library — it offers simple
[widget intvLabel, glue, widget hr, label “:”, .. functional bindings + higher level abstraction (really neat)
,floatBottomRight $ widget startBtn]]] -- start button
Why use wxHaskell? Tour of wxHaskell
* Rapid prototyping » Packages
» Controls
» Commercial applications .
PP » Types & Inheritance
* Events

» Multi-platform support, native look-and-feel _ _
 Attributes and Properties

 Integrate with existing Haskell code e Layout

» Miscellaneous — Db, Timer, Var, OpenGL
» Because we can ©

wxHaskell Packages

» Graphics.U.WXCore

— Lower level interface to wxWidgets library

— Almost one-to-one mapping between C++ and Haskell
» Graphics.ULLWX

— Built on top of WXCore

— Provides nice functional abstraction (attributes, layout
combinators, etc.)

Controls

p <- panel []
txt <- textEntry p AlignLeft [text := “your name here”]
cb <- comboBox p true [“NSW”, “ACT”, “VIC”, “WA"] []

rd <- radioBox p Horizontal [“one”, “two0”]
[on select := logSelection]

Other widgets: Gauge, Choice, ListBox, Slider, TreeCtrl,
SplitterWindow, Toolbar

Types & Inheritance

* Encodes inheritance relationship between different
widget types using ADT

Object (Ptr)
|-

|- Window
|- Frame
|- Control
| - Button
| - RadioBox

Button a === Ptr (... (CWindow (CControl (CButton a))) ...)

Attributes |

We can control various attributes of widgets, e.g.
caption, colour, font, size, etc.

But what attributes can | use on which widget?

« Attributes are organized into Haskell classes
« Types of widgets instantiate appropriate classes
 Inherit instance definitions from “parent types”

Attributes Il

Type Frame a = Window (CFrame a)

Frame a instantiates HasImage, Form, Closable, and everything that
Window instantiates
Window a instantiates Textual,Literate,Dimensions, ...

The HasImage class defines the ‘image’ attribute,
Textual class defines the ‘text’ attribute.

So, we can:

f <- frame []
set f [text := “Window Title”, image := “/some/image.ico”]

Events

¢ Organized into Haskell classes (like Attr)

¢ A widget that instantiates an event class means it can receive
events of that class.

¢ Event handlers can be defined by turning it into an attribute
using the ‘on’ function:

paint :: (Paint w) => Event w (DC () -> Rect -> IO ())

Window is an instance of Paint, so we can define our own paint routine for all
window types (including buttons and text boxes).

set f [on paint := drawObjects]

Attributes and Properties

Attributes are turned in Properties with (:=)

Prop (Button a) Prop (Button a)
/ \ / \
set btn [text 1= “Stop”, on command := doSomething]
| | | |
Attr String Event I0 ()
(Button a) (Button a)
String (I0 ())
set :: forall w. w -> [Prop w] -> IO ()
(:=) :: forall w a. Attrwa ->a -> Prop w
on 11 forall a w. Event w a -> Attr w a

Layout

¢ Manages the positioning and sizing of widgets within a
container widget

« wxHaskell uses layout combinators which allows a more
declarative style of specifying layout

¢ The return type of a layout combinator is always Layout
¢ It may take other arguments, often another Layout

« Allows precise control of behavior when window is resized (or
to prevent resizing)

« Types of layout combinators: layouts (widgets, containers,
glue, spacers) and transformers (stretch, expand, margin,
alignment)

Layout examples

set f [layout := 1%
[$ 1 -- ruler to separate menu from panel
, $ panel $
10 $ 10
[$ 1 -- current time
[timelLabel, , timeStatic],
, $ 1 -- set alarm interval spinCtrl’s
[intvLabel, , hr, R
, $ startBtn]]] -- start button

HPView

¢ Assignment: Heap Profile Viewer for GHC profiling output.
< Similar to hp2ps utility, but interactive.

* Draws a lot of lines so the mathematical model of Haskell
helps.

Screenshot

JRT=TES] | oo ST
Job: HPTestexe +RTS -hc. Date: Tue Apr 20 15:15 2004

(143)5¥STEM
(18€)proci7/procts...
(185)jproc1B/procs..
(184)iprociSjpracid...
(183)jproci4/proct3
(182)jproc13jproci2..

bytes

(181)fprociz/procil...
(180)jproc1Ljproci..
(179)proc10jpr
(178)jprocsfpro
(177)iprocsiproc7pr...
(176)iproc7/proce/pr...
(175)jproctiprocS/pr..
(174)iprocSiprocdjpr...
(173)jproc#iproc3/pr..
(172)proc3iproc2/pr...
(171)procziproctfs...
(170)jproct jseqfcom. .
(169)iseqfcompute/...
(187)jproci8jproct? .
(188)prac19/pracs..,
(188)jprocz0jprocts..
(190)jprocz1jproc20..
(191)fproczz/procal ..
{101)GHC. Handle. CAF
(145)fcompute/main. .
secands (144ymaintsin.caF x|

cBfpr..

HPView screenshot at Milestone2

Round up

» wxHaskell is great!

— script-like GUI creation, speeds up development

—no need to declare variables in 10 monad, types
deduced automatically (no need to keep track of
intermediate objects)

— uniform interface for getting/setting properties

— closure for passing vars to event handlers, no
special handling of void * datal

