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ABSTRACT
During the past two decades many di�erent pointer analysis
algorithms have been published. Although some descrip-
tions include measurements of the e�ectiveness of the al-
gorithm, qualitative comparisons among algorithms are dif-
�cult because of varying infrastructure, benchmarks, and
performance metrics. Without such comparisons it is not
only di�cult for an implementor to determine which pointer
analysis is appropriate for their application, but also for a
researcher to know which algorithms should be used as a
basis for future advances.

This paper describes an empirical comparison of the e�ec-
tiveness of �ve pointer analysis algorithms on C programs.
The algorithms vary in their use of control 
ow informa-
tion (
ow-sensitivity) and alias data structure, resulting in
worst-case complexity from linear to polynomial. The ef-
fectiveness of the analyses is quanti�ed in terms of compile-
time precision and e�ciency. In addition to measuring the
direct e�ects of pointer analysis, precision is also reported
by determining how the information computed by the �ve
pointer analyses a�ects typical client analyses of pointer
information: Mod/Ref analysis, live variable analysis and
dead assignment identi�cation, reaching de�nitions analysis,
dependence analysis, and conditional constant propagation
and unreachable code identi�cation. E�ciency is reported
by measuring analysis time and memory consumption of the
pointer analyses and their clients.

Keywords
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1. INTRODUCTION
Programs written in languages with pointers can be trou-
blesome to analyze because the memory location accessed
through a pointer is not known by inspecting the statement.
To e�ectively analyze such languages, knowledge of pointer
behavior is required. Without such knowledge, conserva-
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tive assumptions about memory locations accessed through
a pointer must be made. These assumptions can adversely
a�ect the precision and e�ciency of any analysis that re-
quires this information, such as a program understanding
system, an optimizing compiler, or a testing tool.

A pointer analysis is a compile-time analysis that attempts
to determine the possible values of a pointer. As such an
analysis is, in general, undecidable [16, 28], many approxi-
mation algorithms have been developed that provide a trade-
o� between the e�ciency of the analysis and the precision
of the computed solution. The worst-case time complexities
of these analyses range from linear to exponential. Because
such worst-case complexities are often not a true indication
of analysis time, many researchers provide empirical results
of their algorithms. However, comparisons among results
from di�erent researchers can be di�cult because of di�er-
ing program representations, benchmark suites, and preci-
sion/e�ciency metrics. In this work, we describe a compre-
hensive study of �ve widely used pointer analysis algorithms
that holds these factors constant, thereby focusing more on
the e�cacy of the algorithms and less on the manner in
which the results were obtained.

The main contributions of this paper are the following:

� empirical results that measure the precision and ef-
�ciency of �ve pointer alias analysis algorithms with
varying degrees of 
ow-sensitivity and alias data struc-
tures: Address-taken, Steensgaard [34], Andersen [1],
Burke et al. [4, 12], Choi et al. [5, 12];

� empirical data on how the pointer analyses solutions
a�ect the precision and e�ciency of the following client
analyses: Mod/Ref, live variable analysis and dead
assignment identi�cation, reaching de�nition analysis,
dependence analysis, and interprocedural conditional
constant propagation and unreachable code identi�ca-
tion.

The results show (1) Steensgaard's analysis is signi�cantly
more precise than the Address-taken analysis in terms of di-
rect precision and client precision, (2) Andersen's and Burke
et al.'s analyses provide the same level of precision and a
modest increase in precision over Steensgaard's analysis, (3)
the 
ow-sensitive analysis of Choi et al. o�ers only a mini-
mal increase in precision over the analyses of Andersen and
Burke et al. using a direct metric and little or no precision



improvement in client analyses, and (4) increasing the pre-
cision of pointer information reduces the client analyses' in-
put, resulting in signi�cant improvement in their e�ciency.

The remainder of this paper is organized as follows. Sec-
tion 2 describes background for this work and describes how
it di�ers from similar studies. Section 3 provides an overview
of the �ve pointer algorithms. Section 4 summarizes the
client analyses. Section 5 describes the empirical study and
discusses the results. Section 6 describes related work and
Section 7 summarizes the conclusions.

2. BACKGROUND
A pointer alias analysis attempts to determine when two
pointer expressions refer to the same storage location. For
example, if p and q both point to the same storage location,
we say �p and �q are aliases, written as h�p; �qi. A points-
to analysis attempts to determine what storage location a
pointer can point to. This information can then be used to
determine the aliases in the program. This works uses the
compact representation [5, 12] of alias information, which
shares the property of the points-to representation [8], in
that it captures the \edge" characteristic of alias relations.1

For example, if variable a points to b, and b points to c, the
compact representation records only the following alias set:
fh�a; bi; h�b; cig, from which it can be inferred that h�� a; ci
and h�� a; �bi are also aliases. The cost and time when such
information is inferred can a�ect the precision and e�ciency
of the analysis [22, 12, 20].

Interprocedural data-
ow analysis can be classi�ed as 
ow-
sensitive or 
ow-insensitive, depending on whether control-

ow information of a procedure is used during the analy-
sis [23]. By not considering control 
ow information, and
therefore computing a conservative summary, a 
ow-insens-
itive analysis can be more e�cient, but less precise than a

ow-sensitive analysis. In addition to 
ow-sensitivity, there
are several other factors that a�ect cost/precision trade-o�s
including

Context-sensitivity: Is calling context considered when
analyzing a function?

Heap modeling: Are objects named by allocation site or
is a more sophisticated shape analysis performed?

Struct modeling: Are components distinguished or col-
lapsed into one object?

Alias representation: Is an explicit alias representation
or a points-to/compact representation used?

This work holds these factors constant, choosing the most
popular and e�cient alternatives in each case, so that the
results only vary the usage of 
ow-sensitivity. In particular,
all analyses are context-insensitive, name heap objects based
on their allocation site, collapse aggregate components, and
use the compact/points-to representation.

This work di�ers from previous studies [33, 35, 7, 21] in the
following ways:

1The minor di�erence between the compact and points-to
representations [12] is not relevant to this work.

� The breadth of pointer algorithms studied; in the only
two studies [35, 21] that also include a 
ow-sensitive
analysis, the analysis they study [18] also bene�ts from
being context sensitive and uses a di�erent alias rep-
resentation (an explicit one) than the (points-to) 
ow-
insensitive analyses it is compared with.

� The number of client analyses reported; this work is
the �rst to report how reaching de�nitions, 
ow de-
pendences, and interprocedural constant propagation
are a�ected by the quality of pointer analysis.

� The reporting of memory usage, which is an important
aspect in evaluating the scalability of interprocedural
data-
ow analyses.

3. POINTER ANALYSES
The algorithms we consider, listed in order of increasing
precision, are

Address-taken: a 
ow-insensitive algorithm often used in
production compilers that records all variables whose
addresses have been assigned to another variable. This
set includes all heap objects and actual parameters
whose addresses are stored in the corresponding for-
mal. This analysis is e�cient because it is linear in
the size of the program and uses a single solution set,
but can be very imprecise.

Steensgaard [34]: a 
ow-insensitive algorithm that com-
putes one solution set for the entire program and em-
ploys a fast union-�nd [36] data structure to represent
all alias relations. This results in an almost linear time
algorithm that makes one pass over the program. Sim-
ilar algorithms are discussed in [42, 24, 2].

Andersen [1]: an iterative implementation of Andersen's
context-insensitive 
ow-insensitive algorithm, which was
originally described using constraint-solving [1]. Al-
though it also uses one solution set for the entire pro-
gram, it can be more precise than Steensgaard's al-
gorithm because it does not perform the merging re-
quired by the union-�nd data structure. However, it
does require a �xed-point computation over all pointer-
related statements that do not produce constant alias
relations.

Burke et al. [4, 12]: a 
ow-insensitive algorithm that also
iterates over all pointer-related statements in the pro-
gram. It di�ers from Andersen's analysis in that it
computes an alias solution for each procedure, requir-
ing iteration within each function in addition to itera-
tion over the functions. A worklist is used in the lat-
ter case to improve e�ciency. Distinguishing alias sets
for each function allows precision-improving enhance-
ments such as using precomputed kill information [4,
12].2 Burke et al.'s analysis can be more precise than
Andersen's analysis because it can �lter alias informa-
tion based on scoping, i.e., formals and locals from
provably nonactive functions are not considered. It

2This particular enhancement never improved precision over
the Burke et al.'s analysis studied in this paper [13]. Thus,
the enhanced version of Burke et al.'s analysis that uses
precomputed kill information is not included in this study.



T �p, �q, �r;
void main() f

S1: p = new T;
S2: f();
S3: g(&p);
S4: p = new T;
S5: ... = �p;

g

void f() f
S6: q = new T;
S7: g(&q);
S8: r = new T;

g

void g(T�� fp) f
T local;

S9: if (...)
S10: p = &local;

...
g

Figure 1: Example program

may be less e�cient because it computes a solution
set for each function, rather than one for the whole
program.

Choi et al. [5, 12]: a 
ow-sensitive algorithm that com-
putes a solution set for every program point. It asso-
ciates alias sets with each CFG node in the program
and uses worklists for e�ciency [13].

All analyses incorporate (optimistic) function pointer anal-
ysis during the alias analysis by resolving indirect call sites
as the analysis proceeds [8, 4].

In theory, each subsequent analysis is more precise (and
costly) than its predecessors. This paper will help quantify
not only these characteristics, but also how client analyses
are a�ected by the precision of the pointer analyses.

Consider the program in Figure 1, where main calls f and
g, and f also calls g. The Address-taken analysis computes
only one set of objects that it assumes all pointers may point
to: fheapS1, heapS4, heapS6, heapS8, local, p, qg, all of
which will appear to be referenced at S5.

Steensgaard's analysis unions two objects that are pointed-
to by the same pointer into one object. This leads to the
unioning of the points-to sets of these formerly distinct ob-
jects. This unioning removes the necessity of iteration from
the algorithm. In the example, the formal parameter of g,
fp, may point to either p or q, resulting in p and q being
unioned into one object. Thus, it appears that they both can
point to the heap objects that either can point to: heapS1,
heapS4, heapS6, and local. At the dereference of S5, these
four objects are reported aliased to �p.

Andersen's analysis also keeps one set of aliases that can
hold anywhere in the program, but it does not merge objects
that have a common pointer point to them. This leads to
heapS1; heapS4, and local being reported as aliased to �p.

Burke et al.'s analysis associates one set with every function,
which conservatively represents what may hold at any CFG
node in the function, without considering control 
ow within
the function. This distinction allows the removal of objects
that are no longer active, such as local in functions main

and f. This leads to heapS1 and heapS4 being aliased to �p
at S5.

Choi et al.'s analysis associates an alias set before (Inn)
and after (Outn) every CFG node, n. For example, OutS1
= fh�p; heapS1ig because �p and heapS1 refer to the same

storage after S1. Choi et al.'s analysis will compute InS5 =
fh�p; heapS4ig, which is the precise solution for this simple
example.

This example illustrates the theoretical precision/e�ciency
levels of the �ve analyses we study, from Address-taken
(least precise) to Choi et al.'s (most precise). The Address-
taken analysis is our most e�cient analysis because it is
linear and uses only one set. Steensgaard's analysis also
uses one set and is almost linear. The other three analyses
require iteration, but di�er in the amount of information
stored from one alias set per program (Andersen), one set
per function (Burke et al.), and two per CFG Node (Choi
et al.).3

The analyses have been implemented in the NPIC system,
an experimental program analysis system written in C++.
The system uses multiple and virtual inheritance to provide
an extensible framework for data-
ow analyses [14, 26]. A
prototype version of the IBM VisualAge C++ compiler [15]
is used as the front end. The analyzed program is repre-
sented as a program call (multi-) graph (PCG), in which a
node corresponds to a function, and a directed edge repre-
sents a call to the target function.4 Each function body is
represented by a control 
ow graph (CFG), where each node
roughly corresponds to a statement. This graph is used to
build a simpli�ed sparse evaluation graph (SEG) [6], which
is used by Choi et al.'s analysis in a manner similar to Wil-
son [39]. As no CFG is available for library functions, a call
to a library function is modeled based on the function's se-
mantics with respect to pointer analysis. This hand-coded
modeling provides the bene�ts of context-sensitive analy-
sis of such calls. Library calls that cannot a�ect the value
of a pointer are treated as the identity transfer function
for pointer analysis. The implementation also assumes that
pointer values will only exist in pointer variables, and that
pointer arithmetic does not result in the pointer outside of
an array. All string literals are modeled as one object. The
implementation handles setjmp/longjmp in a manner simi-
lar to Wilson [39]; all calls to setjmp are recorded and used
to determine the possible e�ects of a call to longjmp.

To model the values passed as argc and argv to the main

function, a dummy main function was added, which called
the benchmark's main function, simulating the e�ects of

3We have found that performing Choi et al.'s analysis us-
ing a SEG (sparse evaluation graph [6]) instead of a CFG
reduces the number of alias sets by an average of over 73%
and reduces analysis time by an average of 280% [13].
4Indirect calls can result in several potential target func-
tions.



argc and argv. This function also initialized the iob array,
used for standard I/O. The added function is similar to the
one added by Ruf [29, 30] and Landi et al. [19, 17]. Explicit
and implicit initializations of global variables are automati-
cally modeled as assignment statements in the dummy main

function. Array initializations are expanded into an assign-
ment for each array component.

4. CLIENT ANALYSES
This section summarizes the client analyses used in this
study.

4.1 Mod/Ref Analysis
Mod/Ref analysis [20] determines what objects may be mod-
i�ed/referenced at each CFG node. This information is sub-
sequently used by other analyses, such as reaching de�ni-
tions and live variable analysis. This information is com-
puted by �rst visiting each CFG node and computing what
objects are modi�ed or referenced by the node. Pointer
dereferences generate a query of the alias information to
determine the objects modi�ed. These results (Mod and
Ref sets) are summarized for each function and used at call
sites to the function. A call site's Mod/Ref set does not
include a local of a function that cannot be on the acti-
vation stack because its lifetime is not active. The actual
parameters at each call site are assumed to be referenced
because their value is assigned to the corresponding formal
parameter (pass-by-value semantics). The Mod/Ref analy-
sis makes the simplifying assumption that libraries do not
modify or reference locations indirectly through a pointer
parameter. Fixed-point iteration is employed when the pro-
gram has PCG cycles.

4.2 Live Variable Analysis
Live variable analysis [25] determines what objects may be
referenced after a program point without an intervening kill-
ing de�nition. This information is useful for register allo-
cation, detecting uninitialized variables, and �nding dead
assignments. The implementation, a backward analysis, di-
rectly uses the Mod/Ref information. It associates two sets
of live variables with each CFG node representing what is
live before and after execution of the node. Sharing of such
sets is performed when a CFG node has only one successor,
or when the node acts as an identify function, i.e., it has an
empty Mod and Ref set.

All named objects in the Ref set of a CFG node become live
before that node. A named object is killed at a CFG node if
it is de�nitely assigned (i.e., it is the only element in the Mod
set of a noncall node) and represents one runtime object,
i.e., it is not an aggregate, a heap object, or a local/formal
of a recursive function. The implementation processes each
function once, employing a priority-based worklist of CFG
nodes for each function. It is optimistic; no named objects
are considered live initially, except at the exit node where all
nonlocals that are modi�ed in the function are considered
to be live.

4.3 Reaching Definitions Analysis
Reaching de�nitions analysis [25] determines what de�ni-
tions of named objects may reach (in an execution sense) a
program point. This information is useful in computing data

dependences among statements, an important step for pro-
gram slicing [37] and code motion. The implementation, a
forward analysis, uses Mod/Ref information and associates
two sets of reaching de�nitions with each CFG node. Set
sharing is performed as in live variable analysis.

All named objects in the Mod set of a CFG node result in
new de�nitions being generated at that node. De�nitions
are killed as in live variable analysis. Each function is pro-
cessed once, using a priority-based worklist of CFG nodes for
each function. The analysis is optimistic; no de�nitions are
initially considered reaching any point, except for dummy
de�nitions created at the entry node of a function for each
parameter or nonlocal that is referenced in the function.

4.4 Interprocedural Constant Propagation
The constant propagation client [26] is an optimistic in-
terprocedural algorithm inspired by Wegman and Zadeck's
Conditional Constant algorithm [38]. The algorithm tracks
values of variables interprocedurally throughout the pro-
gram and uses this information to simultaneously evaluate
conditional branches where possible, thereby determining
if a conditional branch will always evaluate to one value.
In addition to potentially removing unexecutable code, this
analysis can simplify computations and provide useful infor-
mation for cloning algorithms.

Because this analysis was designed to be combined with Choi
et al.'s pointer analysis [26, 27], it uses pointer information
directly, rather than using the Mod/Ref sets as was done in
reaching de�nitions and live variable analysis. In this work,
the constant propagation analysis is simply run after the
pointer analysis is completed. Like Choi et al.'s analysis, the
constant propagation algorithm uses nested iteration and a
SEG.5 The algorithm extends the traditional lattice of >,
?, and constant to include Positive, Negative, and NonZero.
This can help when analyzing C programs that treat nonzero
values as true.

5. RESULTS
This study was performed on a 333MHz IBM RS/6000 Pow-
erPC 604e with 512MB RAM and 817MB paging space, run-
ning AIX 4.3. The analyses were compiled with IBM's xlC
compiler using the \-O3" option. For each benchmark the
following are reported for all pointer analyses and clients:
precision, analysis time, and the maximum memory usage.
Table 1 describes characteristics of the benchmark suite,
which contains 23 C programs provided by other researchers
[19, 8, 29, 31] and the SPEC benchmark suites.6 LOC is
computed using wc on the source and header �les. The
column marked \Fcts", the number of user-de�ned func-
tions, includes the dummy main function, created to simu-

5However, the SEG bene�ts are not as dramatic; most CFG
nodes are \interesting" to constant propagation, and thus,
the e�ciency is typically worse than Choi et al.'s analysis.
6The large number of CFG nodes for 129.compress results
from the explicit creation of assignment statements for im-
plicit array initialization. Some programs had to be syn-
tactically modi�ed to satisfy C++'s stricter type-checking
semantics. A few program names are di�erent than those
reported in [29]. Namely, ks was referred to as part, and ft
as span [30]. Also, the SPEC CINT92 program 052.alvinn
was named backprop in Todd Austin's benchmark suite [3].



Table 1: Static Characteristics of Benchmark Suite.

Ptr-Asg
CFG Nodes

Name Source LOC Nodes Fcts Pct

allroots Landi 227 159 7 1.3%

052.alvinn SPEC92 272 229 9 10.0%

01.qbsort McCat 325 170 8 24.1%

06.matx McCat 350 245 7 13.5%

15.trie McCat 358 167 13 23.4%

04.bisect McCat 463 175 9 9.7%

�xoutput PROLANGS 477 299 6 4.4%

17.bintr McCat 496 193 17 8.8%

anagram Austin 650 346 16 9.5%

ks Austin 782 526 14 27.4%

05.eks McCat 1,202 677 30 4.0%

08.main McCat 1,206 793 41 20.9%

09.vor McCat 1,406 857 52 28.6%

loader Landi 1,539 691 30 8.8%

129.compress SPEC95 1,934 17,012 25 0.2%

ft Austin 2,156 775 38 18.6%

football Landi 2,354 2,854 58 1.8%

compiler Landi 2,360 1,767 40 5.1%

assembler Landi 3,446 1,845 52 16.6%

yacr2 Austin 3,979 2,070 59 6.6%

simulator Landi 4,639 2,929 111 6.3%


ex PROLANGS 7,659 7,107 88 5.2%

099.go SPEC95 29,637 31,788 373 1.5%

late command-line argument passing. The column marked
\Ptr-Asg Nodes Pct" reports the percentage of CFG nodes
that are considered pointer-assignment nodes, i.e., the num-
ber of assignment nodes where the left side variable involved
in the pointer expression is declared to be a pointer.

5.1 Pointer Analysis Precision
The most direct way to measure the precision of a pointer
analysis is to record the number of objects aliased to a
pointer expression appearing in the program. Using this
metric, Andersen's and Burke et al.'s analyses provide the
same level of precision for all benchmarks, suggesting that
alias relations involving formals or locals from provably non-
active functions do not occur in this benchmark suite. Be-
cause all client analyses use the alias solution computed by
these analysis as their input, there is, likewise, no precision
di�erence in these clients. For this reason, we group these
two analysis together in the precision data. The e�ciency
results of Section 5.6 distinguish these analyses.

A pointer expression with multiple dereferences, such as
���p, is counted as multiple dereference expressions, one
for each dereference. The intermediate dereferences (�p and

��p) are counted as reads. The last dereference (� � �p)
is counted as a read or write depending on the context
of the expression. Statements such as (�p)++ and �p +=

increment are treated as both a read and a write of �p. A
pointer is considered to be dereferenced if the variable is de-
clared as a pointer or an array formal parameter, and one
or more of the \�", \->", or \[ ]" operators are used with
that variable. Formal parameter arrays are included because
their corresponding actual parameter(s) could be a pointer.
We do not count the use of the \[ ]" operator on arrays that
are not formal parameters because the resulting \pointer"
(the array name) is constant, and therefore, counting it may
skew results.

The left half of Table 2 reports the average size of the Mod
and Ref sets for expressions containing a pointer dereference
for each benchmark and the average of all benchmarks.7

This table, and the rest in this paper, use \{" to signify
a value that is the same as in the previous column. For
example, the Ptr-Mod for allroots is the same for Choi et
al.'s analysis and Andersen/Burke et al.'s analyses.

The results show

1. a substantial di�erence between the Address-taken anal-
ysis and Steensgaard's analysis: (i) an average of 30.26
vs. 4.03 and an improvement in all benchmarks that
assigned through a pointer for Ptr-Mod, and (ii) an
average of 30.70 vs. 4.87 and an improvement in all
benchmarks for Ptr-Ref;

2. a measurable di�erence between Steensgaard's analysis
and Andersen/Burke et al.'s analyses: (i) an average of
4.03 vs. 2.06 and an improvement in 15 of the 22 bench-
marks that assign through a pointer for Ptr-Mod, (ii)
and an average 4.87 vs. 2.35 and an improvement in
13 of the 23 benchmarks for Ptr-Ref;

3. little di�erence between Andersen/Burke et al.'s anal-
yses and Choi et al.'s analysis: (i) an average of 2.06
vs. 2.02 and an improvement in 5 of the 22 bench-
marks that assign through a pointer for Ptr-Mod, and
(ii) 2.35 vs. 2.29 and an improvement in 5 of the 23
benchmarks for Ptr-Ref.

In summary, varying degrees of increased precision can be
gained by using a more precise analysis. However, as more
precise algorithms are used, the improvement diminishes.

5.2 Mod/Ref Precision
The right half of Table 2 reports the average Mod/Ref set
size for all CFG nodes. This captures how the pointer anal-
ysis a�ects Mod/Ref analysis, which serves as input to many
other analyses. The results show

1. a substantial di�erence between the Address-taken anal-
ysis and Steensgaard's analysis: (i) an average of 2.50
vs. 1.04 and an improvement in 22 of 23 benchmarks
for Mod, and (ii) 4.48 vs. 1.75 and an improvement in
all 23 benchmarks for Ref;

2. a measurable di�erence between Steensgaard's analy-
sis and Andersen/Burke et al.'s analyses: (i) an av-
erage of 1.04 vs. .87 and an improvement in 13 of 23
benchmarks for Mod, and (ii) 1.75 vs. 1.54 and an im-
provement in 11 of 23 benchmarks for Ref;

3. little di�erence between Andersen/Burke et al.'s anal-
yses and Choi et al.'s analysis: (i) an average of .871
vs. .867 and an improvement in 3 of 23 benchmarks for
both Mod; and (ii) an average of 1.540 vs. 1.536 and
an improvement in 4 of 23 benchmarks for Ref.

7The modeling of potentially many runtime objects with one
representative object may seem more precise when compared
to a model that uses more names [29, 20]. For example, if the
heap was modeled as one object, all heap-directed pointers
would be \resolved" to one object in Table 2.



Table 2: Mod and Ref at pointer dereferences and all CFG nodes. No assignments through a pointer occur
in compiler. \AT" = Address Taken, \St" = Steensgaard's, \A/B"= Andersen/Burke et al., \Ch" = Choi

et al.

Ptr Mod Ptr Ref Mod Ref
Name AT St A/B Ch AT St A/B Ch AT St A/B Ch AT St A/B Ch

allroots 3 2.00 1.00 { 3 2.00 1.38 { .88 .85 .83 { 1.77 1.58 1.52 {
052.alvinn 14 1.00 { { 14 1.00 { { 1.17 .51 { { 2.24 1.00 { {
01.qbsort 12 2.00 1.50 { 12 1.76 { { .95 .46 { { 3.39 .94 { {
06.matx 15 3.00 2.22 { 15 3.25 3.12 { 1.09 .39 .34 { 1.48 .89 .88 {

15.trie 10 1.12 { 1.00 10 1.00 { { 1.02 .58 { .52 4.42 .88 { {
04.bisect 14 1.15 { { 14 1.00 { { 2.57 .58 { { 3.92 1.57 { {
�xoutput 9 1.80 { { 9 2.00 { { .74 .37 { { .78 .56 { {
17.bintr 7 1.00 { { 7 1.00 { { .62 .30 { { 2.07 .71 { {
anagram 17 1.00 { { 17 1.10 { { .90 .45 { { 2.38 1.02 { {

ks 17 1.90 1.86 1.62 17 1.79 { 1.74 1.70 .56 .55 .53 3.76 1.35 { 1.34
05.eks 12 1.22 { { 12 1.02 { { 1.83 .50 { { 3.54 1.63 { {
08.main 13 6.00 3.27 2.61 13 5.14 4.61 3.59 1.76 .63 { { 5.35 1.32 1.30 1.25
09.vor 19 1.85 1.35 1.32 19 1.92 1.68 1.60 2.04 .63 .62 { 7.91 1.40 1.34 {
loader 47 3.77 2.23 { 47 2.09 1.36 { 5.08 .90 .73 { 9.72 1.78 1.30 {

129.compress 13 1.40 1.07 { 13 2.26 1.11 { 1.68 .80 .78 { 1.66 1.29 1.28 {
ft 10 2.87 1.80 1.72 10 2.66 2.53 2.39 2.14 .90 .74 .73 2.58 1.31 { 1.28
football 32 6.00 2.10 { 32 3.26 1.54 { 1.37 .70 .61 { 4.55 1.83 1.65 {
compiler 0 { { { 10 1.00 { { 3.38 { { { 4.45 4.44 { {

assembler 87 1.24 2.21 { 87 15.14 2.11 { 1.21 1.88 .87 { 15.07 4.09 1.47 {
yacr2 48 1.14 1.11 { 48 1.08 1.02 { 5.32 .53 .52 { 7.80 1.65 { {
simulator 87 3.16 2.05 { 87 3.95 1.86 { 6.82 .62 .57 { 8.21 1.21 1.06 {

ex 56 5.37 1.78 { 56 5.09 2.03 2.01 5.97 1.60 1.18 { 1.55 3.89 3.44 3.43
099.go 154 42.68 13.64 { 154 51.39 17.03 { 7.31 5.87 3.94 { 4.47 3.98 3.13 {

Average 30.26 4.03 2.06 2.02 30.70 4.87 2.35 2.29 2.50 1.04 0.871 0.867 4.48 1.75 1.540 1.536

Once again varying degrees of increased precision can be
gained by using a more precise analysis. However, the im-
provements are not as dramatic as in the previous metric,
resulting in minimal precision gain from the 
ow-sensitive
analysis.

5.3 Live Variable Analysis and Dead Assign-
ment Identification

The �rst set of four columns in Table 3 reports precision
results for live variable analysis. For each benchmark we
list the average number of live variables at each CFG node
and the average of these averages. Live variable information
is used to �nd assignments to variables that are never used,
i.e., a dead assignments. The second set of four columns
gives the number of CFG nodes that are dead assignments.

The results show

1. a substantial di�erence between the Address-taken anal-
ysis and Steensgaard's analysis for live variables |
on average 34.24 vs. 20.13 and an improvement in all
benchmarks | but no di�erence for �nding dead as-
signments;

2. a signi�cant di�erence between Steensgaard's analysis
and Andersen/Burke et al.'s analyses for live variables
| an average of 20.13 vs. 18.36 and an improvement
in 13 of 23 benchmarks | but less of a di�erence for
�nding dead assignments: an average of 1.91 vs. 1.96
and an improvement in only 1 of 23 benchmarks.

3. a small di�erence between Andersen/Burke et al.'s anal-
yses and Choi et al.'s analysis for live variables | an
average of 18.36 vs. 18.30 and an improvement in 3 of

23 benchmarks | but no di�erence for �nding dead
assignments.

In summary, more precise pointer analyses improved the
precision of live variable analysis, but Choi et al.'s analy-
sis provided only minimal improvement. In contrast, dead
assignments identi�cation was hardly a�ected by using dif-
ferent pointer analyses.

5.4 Reaching Definitionsand FlowDependences
The third set of four columns in Table 3 reports precision
results for reaching de�nitions analysis. For each bench-
mark we list the average number of de�nitions that reach a
CFG node. The last set of four columns reports the average
number of unique 
ow dependences between two CFG nodes
per function. This metric captures reaching de�nitions that
are used at a CFG node, but counts dependences between
the same two nodes only once. Thus, if a set of variables
are potentially de�ned at one node and potentially used at
another node, only one dependence is counted because only
one such dependence is needed to prohibit code motion of
the two nodes or to be part of a slice.

The results show

1. a signi�cant di�erence between the Address-taken anal-
ysis and Steensgaard's analysis: (i) an average of 36.39
vs. 22.04 and an improvement in all 23 benchmarks for
reaching de�nitions, and (ii) an average of 52.51 vs.
44.24 and an improvement in 21 of 23 benchmarks for

ow dependences;

2. a measurable di�erence between Steensgaard's analy-
sis and Andersen/Burke et al.'s analyses: (i) an aver-



Table 3: Live variables, dead assignments, reaching de�nitions, and 
ow dependences. \AT" = Address
Taken, \St" = Steensgaard's, \A/B"= Andersen/Burke et al., \Ch" = Choi et al.

Avg live variables at a Node Total dead assignments Avg reaching defs at a node Avg 
ow deps per function
Name AT St A/B Ch AT St A/B Ch AT St A/B Ch AT St A/B Ch

allroots 18.11 17.19 17.08 { 0 { { { 20.19 19.23 { { 36.33 { { {
052.alvinn 12.94 7.83 { { 0 { { { 13.08 7.84 { | 30.75 28.38 { {

01.qbsort 14.36 6.96 { { 0 { { { 15.54 7.02 { { 37.29 28.86 { {
06.matx 21.52 14.97 13.08 { 0 { { { 23.12 16.22 14.73 { 41.00 38.00 { {
15.trie 11.77 5.94 { 5.39 0 { { { 13.23 5.22 { 5.11 11.08 9.58 { {
04.bisect 21.45 12.83 { { 0 { { { 23.24 14.80 { { 58.67 46.67 { {
�xoutput 15.39 13.43 { { 0 { { { 15.38 10.31 { { 74.00 46.60 { {

17.bintr 7.20 3.24 { { 0 { { { 8.34 3.45 { { 12.50 9.67 { {
anagram 17.70 10.67 { { 0 { { { 17.17 10.92 { { 29.00 25.47 { {
ks 23.55 13.84 { { 0 { { { 23.24 15.40 { 15.34 72.08 59.69 { {
05.eks 18.29 10.23 { { 0 { { { 17.89 9.45 { { 37.93 35.21 { {
08.main 17.89 10.32 10.26 9.74 7 { { { 19.82 12.26 11.68 11.20 36.93 26.50 { {

09.vor 20.33 6.96 6.85 { 2 { { { 23.68 7.35 7.26 { 34.92 26.52 26.20 {
loader 50.16 21.76 16.97 { 0 { { { 51.68 22.60 17.83 { 49.52 32.21 31.38 {
129.compress 24.09 14.86 14.60 { 1 { { { 25.62 17.59 17.53 { 38.39 36.78 36.56 {
ft 17.06 11.46 11.31 11.10 1 { { { 16.79 11.17 11.11 10.89 40.67 37.93 37.78 {

football 38.09 24.70 23.25 { 2 { { { 41.08 26.63 25.15 { 69.12 66.93 65.56 {
compiler 43.73 43.70 { { 0 { { { 47.16 47.09 { { 88.35 88.32 { {
assembler 82.24 37.36 20.75 { 1 { { { 85.40 40.60 22.58 { 86.02 49.00 47.53 {
yacr2 56.00 18.50 18.46 { 1 { { { 57.18 21.39 21.35 { 51.86 46.86 { {
simulator 60.10 10.28 9.70 { 1 { { { 61.84 13.30 12.74 { 43.10 33.59 33.53 {


ex 107.70 72.48 65.07 { 1 { { { 119.30 84.43 77.17 77.05 116.50 97.22 94.74 {
099.go 87.87 73.37 66.12 { 27 { 28 { 96.91 82.72 74.91 { 111.70 111.10 108.90 {

Average 34.24 20.13 18.36 18.30 1.91 { 1.96 { 36.39 22.04 20.21 20.16 52.51 44.24 43.84 {

age of 22.04 vs. 20.21 and an improvement in 12 of 23
benchmarks for reaching de�nitions, and (ii) an aver-
age of 44.24 vs. 43.84 and an improvement in 9 of 23
benchmarks for 
ow dependences;

3. a negligible di�erence between Andersen/Burke et al.'s
analyses and Choi et al.'s analysis for reaching de�ni-
tions | an average of 20.21 vs. 20.16 and an improve-
ment in 5 of 23 benchmarks | but no di�erence in

ow dependences for any benchmark.

In summary, each successively more precise analysis results
in an improvement of precision of reaching de�nitions, but
this improvement is diminished when 
ow dependences are
computed. In particular, there is no gain in 
ow depen-
dences precision using Choi et al.'s analysis over Ander-
sen/Burke et al.'s analyses and only minor improvements in
using Andersen/Burke et al.'s analyses over Steensgaard's
analysis.

5.5 Constant Propagation and Unexecutable
Code Detection

The constant propagation precision results are shown in Ta-
ble 4. After the benchmark name the �rst four columns give
the number of complete expressions found to be constant.
This metric does not count subexpressions such as \b" in
\: : : =b+c;". The next four columns report the number of
unexecutable nodes found by the analysis. The results show

1. a signi�cant di�erence between the Address-taken anal-
ysis and Steensgaard's analysis: (i) an average of 7.8
vs. 10.6 constants found, but an improvement in only
3 of 22 benchmarks, and (ii) an average of 3.2 vs. 25.3
unexecutable nodes detected, but an improvement in
only 2 of 22 benchmarks;

Table 4: Constants and unexecutable CFG nodes
found. \AT" = Address Taken, \St" = Steens-

gaard's, \A/B"= Andersen/Burke et al., \Ch" =
Choi et al. 099.go is not included because it ex-

hausts the 200MB heap size.

Constants Unexecutable Nodes
Name AT St A/B Ch AT St A/B Ch

allroots 21 { { { 12 { { {
052.alvinn 2 { { { 0 { { {
01.qbsort 0 { { { 0 { { {
06.matx 3 { { { 1 { { {

15.trie 0 { { { 0 { { {
04.bisect 0 2 { { 0 { { {
�xoutput 0 { { { 0 { { {
17.bintr 3 { { { 6 { { {

anagram 3 { { { 6 { { {
ks 0 { { { 0 { { {
05.eks 0 { { { 0 { { {
08.main 36 { { { 16 { { {
09.vor 13 { { { 0 { { {

loader 8 { 9 { 0 { 1 {
129.compress 34 { { { 5 { { {
ft 6 { { { 2 { { {
football 0 { { { 0 { { {
compiler 7 { { { 0 { { {

assembler 7 { { { 0 { { {
yacr2 4 { { { 1 { { {
simulator 10 11 { { 5 6 { {

ex 15 74 { { 16 502 { {

Average 7.8 10.6 10.7 { 3.2 25.3 25.4 {



2. a negligible di�erence between Steensgaard's analysis
and Andersen/Burke et al.'s analyses: (i) an average
of 10.6 vs. 10.7 constants found, an improvement in
only 1 of 22 benchmarks, and (ii) an average of 25.3
vs. 25.4 unexecutable nodes detected, an improvement
in only 1 of 22 benchmarks;

3. no di�erence between Andersen/Burke et al.'s analyses
and Choi et al.'s analysis in terms of constants found
and unexecutable nodes detected.

In summary, constant propagation and unexecutable code
detection does not seem to bene�t much from increasing
precision beyond Steensgaard's analysis.

5.6 Efficiency
The e�ciency of an algorithm can vary greatly depending on
the implementation [13] and therefore, care must be taken
when drawing conclusions regarding e�ciency. For example,
F�ahndrich et al. [9] have demonstrated that the e�ciency of
a constraint solving implementation of Andersen's algorithm
can be improved by orders of magnitude, without a loss of
precision, using partial online cycle detection and inductive
form.

Table 5 presents the analysis time in seconds of �ve individ-
ual runs for each benchmark. The runs di�er only in the
pointer analysis used. The times are given for the pointer
analysis, the total time for all client analyses, and the sum
of these two values. The time reported does not include
the time to build the PCG and CFGs, but does include any
analysis-speci�c preprocessing, such as the building of the
SEG from the CFG in Choi et al.'s analysis. The last line
gives the average for each column expressed as a ratio of the
Address-taken analysis for each category: pointer analysis,
clients, and total. For example, the average pointer anal-
ysis time of Andersen's analysis is 29.60 times that of the
average pointer analysis time of the Address-taken analysis,
but the average of the client analyses using this information
is .84 times the average of the same client analyses using
the alias information from the Address-taken analysis. The
results show

1. the Address-taken and Steensgaard's analyses are very
fast; in all benchmarks these analyses completed in less
than a second;

2. the 
ow-insensitive analyses of Andersen and Burke
et al. are signi�cantly slower (approximately 30 times)
than the Address-taken and Steensgaard's analyses;

3. the 
ow-sensitive analysis of Choi et al.'s is on average
80 times slower than the Address-taken analysis and
about 2.5 times slower than the Andersen/Burke et
al.'s analyses;

4. the client analyses improved in e�ciency as the pointer
information was made more precise because the input
size to these client analysis is smaller. On average this
reduction outweighed the initial costs of the pointer
analysis for Steensgaard, Andersen, and Burke et al.'s
analyses compared to the Address-taken analysis, and
brought the total time of the 
ow-sensitive analysis

of Choi et al.'s to within 9% of the total time of the
Address-taken analysis.

Table 6 reports the high-water mark of memory usage during
the various analyses as reported by the \ps v" command
under AIX 4.3. As before, the amounts are given for the
pointer analysis, the total memory for all client analyses,
and the sum of these two values. The last line gives the
average for each column expressed as a ratio of the Address-
taken analysis for each category: pointer analysis, clients,
and total. The results show

1. the memory consumption of the Address-taken and
Steensgaard's analyses are similar;

2. the memory consumption of the 
ow-sensitive analysis
of Choi et al. can be over 6 times larger than any of the
other pointer analysis (flex), and on average uses 12
times more memory than the Address-taken analysis;

3. once again, the memory usage of the client analy-
ses improves as the precision of pointer information
increases; on average the clients using the informa-
tion produced by Choi et al.'s analysis used the least
amount of memory, which was enough to overcome the
twelve-fold increase in pointer analysis memory con-
sumption over the Address-taken analysis.

6. RELATED WORK
Because of space constraints we limit this section to other
comparative studies of pointer analyses. A more thorough
treatment of related work can be found in [12, 20, 39].

Ruf [29] presents an empirical study of two algorithms: a

ow-sensitive algorithm similar to Choi et al. and a context-
sensitive version of the same algorithm. The context-sensitive
algorithm did not improve precision at pointer dereferences,
but Ruf cautioned that this may be a characteristic of the
benchmark suite.

Shapiro and Horwitz [32] present an empirical comparison
of four 
ow-insensitive algorithms: Address-taken, Steens-
gaard, Andersen, and a fourth algorithm [33] that can be pa-
rameterized between Steensgaard's and Andersen's analysis.
The authors measure the precision of these analyses using
procedure-level Mod, live and truly live variables analyses,
and an interprocedural slicing algorithm. Their results sug-
gest that a more precise analysis will improve the precision
and e�ciency of its clients, but leave as an open question
whether a 
ow-sensitive analysis will follow this pattern.

Landi et al. [20, 35] report precision results for the compu-
tation of the interprocedural Mod problem using the 
ow-
sensitive context-sensitive analysis of Landi and Ryder [18].
They compare this analysis with an analysis [42] that is
similar to Steensgaard's analysis. They found that the more
precise analysis provided improved precision, but exhausted
memory on some programs that the less precise analysis was
able to process.

Emami et al. [8] report precision results for a 
ow-sensitive
context-sensitive algorithm. Ghiya and Hendren [11] empir-



Table 5: Analysis Time in Seconds
Pointer Analysis Clients Total

Name AT ST An Bu Ch AT ST An Bu Ch AT ST An Bu Ch

allroots 0.01 0.01 0.02 0.03 0.02 0.08 0.08 0.12 0.10 0.09 0.09 0.09 0.14 0.13 0.11
052.alvinn 0.01 0.01 0.02 0.04 0.04 0.22 0.18 0.21 0.20 0.18 0.23 0.19 0.23 0.24 0.22

01.qbsort 0.01 0.01 0.05 0.13 0.30 0.11 0.06 0.09 0.09 0.07 0.12 0.07 0.14 0.22 0.37
06.matx 0.01 0.01 0.06 0.15 0.27 0.20 0.14 0.20 0.16 0.15 0.21 0.15 0.26 0.31 0.42
15.trie 0.01 0.01 0.11 0.19 0.16 0.07 0.07 0.12 0.07 0.08 0.08 0.08 0.23 0.26 0.24
04.bisect 0.01 0.01 0.03 0.05 0.05 0.15 0.10 0.13 0.11 0.10 0.16 0.11 0.16 0.16 0.15

�xoutput 0.01 0.01 0.01 0.06 0.06 0.07 0.06 0.10 0.08 0.07 0.08 0.07 0.11 0.14 0.13
17.bintr 0.01 0.01 0.06 0.05 0.09 0.06 0.07 0.06 0.07 0.05 0.07 0.08 0.12 0.12 0.14
anagram 0.01 0.01 0.09 0.21 0.17 0.34 0.30 0.34 0.30 0.30 0.35 0.31 0.43 0.51 0.47
ks 0.01 0.01 0.08 0.37 0.51 0.34 0.22 0.27 0.21 0.22 0.35 0.23 0.35 0.58 0.73
05.eks 0.01 0.01 0.08 0.17 0.26 0.70 0.65 0.74 0.66 0.68 0.71 0.66 0.82 0.83 0.94

08.main 0.01 0.01 0.66 1.12 1.44 1.14 0.92 1.03 0.95 0.94 1.15 0.93 1.69 2.07 2.38
09.vor 0.01 0.01 3.21 4.05 6.24 1.44 1.09 1.69 1.11 1.04 1.45 1.10 4.90 5.16 7.28
loader 0.01 0.01 0.62 0.59 1.88 2.18 1.84 2.18 1.47 1.46 2.19 1.85 2.80 2.06 3.34
129.compress 0.03 0.04 0.02 0.07 0.08 1.99 1.82 1.97 1.79 1.83 2.02 1.86 1.99 1.86 1.91
ft 0.01 0.01 0.53 1.44 2.27 0.43 0.23 0.40 0.27 0.25 0.44 0.24 0.93 1.71 2.52

football 0.01 0.01 1.34 0.89 1.40 10.38 10.28 11.65 8.50 8.45 10.39 10.29 12.99 9.39 9.85
compiler 0.01 0.01 0.08 0.67 0.64 1.94 2.06 3.09 2.02 2.16 1.95 2.07 3.17 2.69 2.80
assembler 0.01 0.02 5.68 1.77 4.81 6.17 5.21 6.92 3.52 3.26 6.18 5.23 12.60 5.29 8.07
yacr2 0.01 0.01 1.10 2.37 4.92 8.14 6.53 9.61 5.79 5.05 8.15 6.54 10.71 8.16 9.97
simulator 0.02 0.01 1.87 2.19 6.94 16.13 12.80 15.14 8.82 8.42 16.15 12.81 17.01 11.01 15.36


ex 0.02 0.02 4.20 11.59 36.88 44.31 30.84 33.18 29.05 28.26 44.33 30.86 37.38 40.64 65.14
099.go 0.73 0.62 9.38 4.39 9.27 98.96 83.82 74.42 73.18 72.54 99.69 84.44 83.80 77.57 81.81

Ratio to AT 1.00 0.90 29.60 32.92 79.49 1.00 0.81 0.84 0.71 0.69 1.00 0.82 0.98 0.87 1.09

Table 6: Memory Usage in MBs

Pointer Analysis Clients Total
Name AT ST An Bu Ch AT ST An Bu Ch AT ST An Bu Ch

allroots 0.18 0.25 0.19 0.21 0.18 0.42 0.47 0.47 0.41 0.75 0.60 0.72 0.66 0.62 0.93

052.alvinn 0.13 0.00 1.00 0.22 0.86 0.87 1.73 1.40 0.96 0.50 1.00 1.73 2.40 1.18 1.36
01.qbsort 0.00 0.26 1.36 1.37 0.59 0.59 0.41 0.40 0.28 0.33 0.59 0.67 1.76 1.65 0.92
06.matx 0.00 0.06 2.13 0.50 1.11 1.38 0.82 0.71 0.71 0.74 1.38 0.88 2.84 1.21 1.85
15.trie 0.84 0.29 2.06 0.45 0.97 0.42 0.30 0.24 0.20 0.23 1.26 0.59 2.30 0.65 1.20
04.bisect 1.01 0.61 2.25 0.00 0.50 0.89 0.91 0.55 0.66 0.60 1.90 1.52 2.80 0.66 1.10

�xoutput 0.21 0.43 2.00 0.14 0.28 0.47 0.40 0.40 0.28 0.88 0.68 0.83 2.40 0.42 1.16
17.bintr 0.35 0.00 2.07 0.15 0.62 0.36 0.63 0.28 0.29 0.26 0.71 0.63 2.35 0.44 0.88
anagram 0.50 0.28 1.62 0.04 0.25 1.15 1.10 0.91 0.96 1.37 1.65 1.38 2.53 1.00 1.62
ks 0.26 0.31 2.39 0.42 1.63 2.79 2.38 2.36 2.31 2.86 3.05 2.69 4.75 2.73 4.49
05.eks 0.00 0.10 2.04 0.18 0.75 2.13 1.86 1.69 1.72 1.66 2.13 1.96 3.73 1.90 2.41

08.main 0.19 0.00 3.39 0.76 2.72 2.66 1.89 1.47 1.43 1.42 2.85 1.89 4.86 2.19 4.14
09.vor 0.00 0.01 3.66 1.18 5.00 6.22 4.16 3.80 3.60 3.25 6.22 4.17 7.46 4.78 8.25
loader 0.16 0.01 2.45 0.98 2.33 7.87 5.07 4.46 3.35 3.11 8.03 5.08 6.91 4.33 5.44
129.compress 0.01 0.27 0.00 0.30 0.30 16.68 16.27 16.54 16.25 16.45 16.69 16.54 16.54 16.55 16.75
ft 0.00 0.08 2.36 0.65 2.83 3.37 2.75 2.60 2.51 2.46 3.37 2.83 4.96 3.16 5.29

football 0.01 0.01 6.62 1.86 5.31 32.16 29.93 28.12 25.11 24.79 32.17 29.94 34.74 26.97 30.10
compiler 0.61 1.22 4.20 1.05 2.19 14.60 15.03 14.11 13.80 13.72 15.21 16.25 18.31 14.85 15.91
assembler 0.05 1.06 4.53 1.95 6.36 32.88 24.68 24.25 17.76 17.05 32.93 25.74 28.78 19.71 23.41
yacr2 0.01 0.01 5.19 2.00 8.05 27.27 20.31 19.21 17.72 16.67 27.28 20.32 24.40 19.72 24.72

simulator 0.00 1.46 6.50 2.23 4.95 47.08 31.99 31.16 17.99 17.07 47.08 33.45 37.66 20.22 22.02

ex 1.04 0.00 1.41 3.53 21.30 150.47 118.09 115.58 113.08 110.88 151.51 118.09 116.99 116.61 132.18
099.go 1.62 1.55 1.75 2.44 18.41 114.06 97.96 89.38 88.52 88.53 115.68 99.51 91.13 90.96 106.94

Ratio to AT 1.00 1.15 8.52 3.15 12.19 1.00 0.81 0.77 0.71 0.70 1.00 0.82 0.89 0.74 0.87



ically demonstrate how a version of points-to [8] and connec-
tion analyses [10] can improve traditional transformations,
array dependence testing, and program understanding.

Wilson and Lam [40, 39] present a context-sensitive algo-
rithm that avoids redundant analyses of functions for sim-
ilar calling contexts. The algorithm distinguishes structure
components and handles pointer arithmetic. Wilson [39]
compares various levels of context-sensitivity and describes
how dependence analysis uses the computed information to
parallelize loops in two SPEC benchmarks.

Diwan et al. [7] examine the e�ectiveness of three type-based

ow-insensitive analyses for a type-safe language (Modula-
3). The �rst two algorithms rely on type declarations. The
third considers assignments in a manner similar to Steens-
gaard's analysis, but retains declared type information. They
evaluate the e�ect of these algorithms on redundant load
elimination using statical, dynamic, and upper bound met-
rics. They conclude that for type-safe languages such as
Modula-3 or Java, a fast and simple type-based analysis
may be su�cient.

In an earlier paper [13], we describe an empirical compari-
son of four context-insensitive pointer algorithms: three de-
scribed in this paper (Choi et al., Burke et al., Address-
taken) and a 
ow-insensitive algorithm that uses precom-
puted kill information [4, 12]. No alias analysis clients are
studied. The paper also quanti�es analysis-time speed-up of
various implementation techniques for Choi et al.'s analysis.

Yong et al. [41] present a tunable pointer-analysis framework
for handling structures in the presence of casting. They pro-
vide experimental results from four instances of the frame-
work using a 
ow- and context-insensitive algorithm, which
appears to be similar to Andersen's algorithm. Their results
show that for this pointer algorithm distinguishing struct
components can improve precision where pointers are deref-
erenced (the metric used in Section 5.1). They do not ad-
dress how this a�ects the precision of client analyses or if
similar results hold for other pointer analyses.

Liang and Harrold [21] describe a context-sensitive 
ow-
insensitive algorithm and empirically compare it to three
other algorithms: Steensgaard, Andersen, and Landi and
Ryder [18], using Ptr-Mod (Section 5.1), summary edges in
a system dependence graph, and average slice size as preci-
sion metrics. They demonstrate performance and precision
mostly between Andersen's and Steensgaard's algorithms.
None of the implementations handles function pointers or
setjmp/longjmp.

7. CONCLUSIONS
This paper describes an empirical study of the precision and
e�ciency of �ve pointer analyses and typical clients of the
alias information they compute. The major conclusions are

� Steensgaard's analysis is signi�cantly more precise than
the Address-taken analysis without an appreciable in-
crease in compilation time or memory usage, and there-
fore should always be preferred over the Address-taken
analysis.

� The 
ow-insensitive analysis of Andersen and Burke et
al. provide the same level of precision. Both analyses
o�er a modest increase in precision over Steensgaard's
analysis. Although this improvement requires addi-
tional pointer analysis time, it is typically o�set by
decreasing the input size (the alias information) and
analysis time of subsequent analyses. There is not a
clear distinction in analysis time or memory usage be-
tween the implementations of these analyses.

� The use of 
ow-sensitive pointer analysis (as described
in this paper) does not seem justi�ed because it o�ers
only a minimum increase in precision over the analy-
ses of Andersen and Burke et al. using a direct metric
(such as ptr-mod/ref) and little or no precision im-
provement in client analyses.

� The time and space e�ciency of the client analyses
improved as the pointer analysis precision increased
because the increase in precision reduced the input to
these client analysis.
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