
Partial Redundancy Elimination in SSA Form

ROBERT KENNEDY, SUN CHAN, SHIN-MING LIU, RAYMOND LO, PENG TU

and

FRED CHOW

SGI

The SSAPRE algorithm for performing partial redundancy elimination based entirely on SSA
form is presented. The algorithm is formulated based on a new conceptual framework, the fac-
tored redundancy graph, for analyzing redundancy, and represents the first sparse approach to the
classical problem of partial redundancy elimination. At the same time, it provides new perspec-
tives on the problem and on methods for its solution. With the algorithm description, theorems
and their proofs are given showing that the algorithm produces the best possible code by the
criteria of computational optimality and lifetime optimality of the introduced temporaries. In
addition to the base algorithm, a practical implementation of SSAPRE that exhibits additional
compile-time efficiencies is described. In closing, measurement statistics are provided that char-
acterize the instances of the partial redundancy problem from a set of benchmark programs and
compare optimization time spent by an implementation of SSAPRE against a classical partial re-
dundancy elimination implementation. The data lend insight into the nature of partial redundancy
elimination and demonstrate the expediency of this new approach.

Categories and Subject Descriptors: D.3.3 [Programing Languages]: Language Constructs—
control structures; data types and structures; procedures, functions and subroutines; D.3.4 [Pro-
gramming Languages]: Processors—compilers; optimization; I.1.2 [Algebraic Manipula-
tion]: Algorithms—analysis of algorithms; I.2.2 [Artificial Intelligence]: Automatic Program-
ming—program transformation

General Terms: Algorithms, Measurement, Theory

Additional Key Words and Phrases: Partial redundancy, code motion, static single assignment
form, common subexpressions, data flow analysis

1. INTRODUCTION

Partial redundancy elimination (PRE) is a powerful optimization technique first de-
veloped by Morel and Renvoise [1979]. The technique removes partial redundancies
in the program by performing data flow analysis that solves for code placements.
Since global common subexpressions and loop-invariant computations are special
cases of partial redundancies, they are subsumed by PRE. As a result, PRE has
become the most important component in many global optimizers [Chow 1983;
Chow et al. 1986; Schwarz et al. 1988; Briggs and Cooper 1994; Simpson 1996]. An

Authors’ present addresses: Silicon Graphics, Inc., 1600 Amphitheatre Parkway, Mountain View,
CA 94043; R. Kennedy, 210 Bar King Road, Boulder Creek, CA 95006; P. Tu, 32424 Monterey
Drive, Union City, CA 94587.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 1999 ACM 0164-0925/99/0500-0627 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999, Pages 627–676.

628 · Robert Kennedy et al.

alternative placement strategy called lazy code motion [Knoop et al. 1992; 1994]
improves on Morel and Renvoise’s results by avoiding unnecessary code movements,
and by removing the bidirectional nature of the original PRE data flow equations.
The result of lazy code motion is optimal: the number of computations cannot
be further reduced by safe code motion [Kennedy 1972], and the lifetimes of the
temporaries introduced are minimized. Drechsler and Stadel [1993] give a variant
of the lazy code motion algorithm that is based on a different data flow framework.
Muchnick [1997] gives a good introduction to the problem of partial redundancy
elimination and to classical methods for its solution.

Each of the above approaches to PRE is based on a bit-vector formulation of the
problem and on the iterative solution of data flow equations. This article presents a
new approach called SSAPRE [Chow et al. 1997] that shares the optimality proper-
ties of the best prior work [Knoop et al. 1992; 1994; Drechsler and Stadel 1993] and
that is based on static single-assignment form (SSA). SSA is a popular program
representation in modern optimizing compilers. Its versatility stems from the fact
that, in addition to representing the program, it provides accurate use-definition
(use-def) relationships among the program variables in a concise form [Cytron et al.
1991; Wolfe 1996; Chow et al. 1996]. Many efficient global optimization algorithms
have been developed based on SSA. Among these optimizations are dead-store elim-
ination [Cytron et al. 1991], constant propagation [Wegman and Zadeck 1991], value
numbering [Alpern et al. 1988; Rosen et al. 1988; Briggs et al. 1997], induction vari-
able analysis [Gerlek et al. 1995; Liu et al. 1996], live-range computation [Gerlek
et al. 1994], and global code motion [Click 1995]. Until recently, most uses of SSA
have been restricted to solving problems based essentially on program variables.
SSA could not readily be applied to solving expression-based problems because the
concept of use-def for expressions is less obvious than for variables. This difficulty
was mentioned by Dhamdhere et al. in the conclusion of Dhamdhere et al. [1992].
They state, essentially, that there is no clear connection between the use-def infor-
mation for variables represented by SSA form and the redundancy properties for
expressions. By demonstrating such a connection and exploiting it, our work shows
that an SSA-based approach to PRE and other expression-based problems is not
only plausible, but also enlightening and practical. Although this article addresses
only the PRE problem, other expression-based problems can be addressed based
on the framework presented.

There are many reasons why an SSA-based solution to an optimization problem
is desirable. Optimizations based on SSA all share the common characteristic that
they do not require traditional iterative data flow analysis in their solutions. They
all take advantage of the sparse representation of SSA. In a sparse form, informa-
tion associated with an object is represented only at places where it changes, or
when the object actually occurs in the program. Sparse representations typically
conserve memory space by avoiding needless duplication of data. Information can
be propagated through a sparse representation in a smaller number of steps than
through a dense structure, speeding up most algorithms. To benefit fully from
sparseness, one must often sacrifice the parallelism that can be achieved in many
techniques that operate on the entire program at once. For example, traditional
data flow analysis based on bit vectors can operate on all program expressions
in parallel. Although sparse schemes give up this parallelism, operating on each
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

Partial Redundancy Elimination in SSA Form · 629

element separately allows optimization decisions to be customized for each one.
Another advantage of SSA is that it allows a global optimization to efficiently

subsume the local version of the same optimization. Depending on the nature of
the optimization, traditional frameworks typically require two separate implemen-
tations for efficiency’s sake: a global version that uses bit vectors in each basic
block and a simpler and faster local version that performs the same optimization
within a basic block. Global implementations of an optimization can handle the
local version’s job, but usually at substantially higher cost. In contrast, SSA-based
optimization algorithms do not need to distinguish between global and local opti-
mizations because SSA directly exposes the use-def relationships in the program.
The same algorithm can handle both global and local versions of an optimiza-
tion simultaneously and efficiently. The amount of effort required to implement
an optimization can thus be correspondingly reduced. Similar reductions in imple-
mentation effort for some optimizations can be had through prior sparse techniques
similar to ours [Choi et al. 1991], although that work did not apply its techniques
to expression-based optimization problems.

Further motivation for this work comes from the fact that traditional data flow
analysis based on bit vectors does not interface well with the SSA form of program
representation. The use-def information encoded in SSA has to be converted to
bit-vector form in order to apply the bit-vector-based algorithms. This process
involves scanning the contents of each basic block in the program to initialize the
local data flow attributes in bit-vector form. Experience has shown that this dense
initialization of data flow information often takes more time than the solution of the
data flow equations. After transformation, the program has to be put back into SSA
form if subsequent SSA-based optimizations are desired. Such repeated updates to
SSA form due to arbitrary modifications to the program can add up to substantial
compile-time overhead [Choi et al. 1996]. In contrast, the SSAPRE algorithm
exploits the built-in use-def information in its input SSA form, and intrinsically
produces its optimized output in SSA form. It performs data flow propagation
based on sparse graphs that it constructs. The entire program is maintained in
valid SSA form as SSAPRE iterates through the PRE candidates.

The rest of this article is organized as follows. Section 2 briefly reviews the funda-
mentals of the SSA form and presents the factored redundancy graph (FRG) which
forms the basis of our sparse approach to PRE. Section 3 describes the SSAPRE
algorithm in detail, while stating related lemmas with proofs. Section 4 discusses
the theoretical aspects of the SSAPRE algorithm, and verifies its correctness and
optimality. Section 5 discusses some practical issues related to an efficient and ef-
fective implementation of SSAPRE. Section 6 compares and contrasts the steps in
SSAPRE with bit-vector-based PRE and analyzes the complexity of the SSAPRE
algorithm. Section 7 provides measurement data that compare an implementation
of our algorithm against a bit-vector PRE implementation and that characterize
the partial redundancy problems based on our approach across a set of benchmark
programs. Section 8 concludes by discussing the implications of this work.

2. SSA AND SPARSE PRE

As background for the SSAPRE algorithm, we briefly define some terms, review
some characteristics of SSA form, and discuss some properties of redundancy among

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

630 · Robert Kennedy et al.

computations in a program. We define the concept of a redundancy relation for
a program computation and present the factored redundancy graph (FRG) which
we use to represent such a relation. We briefly review the connections between
SSA form and the classical use-definition relation for a program variable, and we
show that the FRG and the redundancy relation share the same connections. This
analogy between SSA and our factored representation of redundancy in the program
is the foundation of the SSAPRE algorithm’s ability to operate directly on an input
program in SSA form and to produce its output directly in SSA form.

2.1 Control Flow and Dominance

We assume the code for the program being optimized has been partitioned into
basic blocks with the property that control may enter a basic block only at the
beginning and may leave only at the end. The control flow graph has the basic
blocks as its nodes and has an edge from block B1 to block B2 if and only if control
can transfer directly from the end of B1 to the beginning of B2. Without loss of
generality, we assume the program has a unique entry and a unique exit block and
that every block in the program lies on some path from entry to exit.

A block B1 is said to dominate the block B2 if every control flow path from
the program entry to B2 encounters B1. We say B1 strictly dominates B2 if B1

dominates B2 and B1 6= B2. If B1 strictly dominates B2 and no block other than
B1 on any control flow path from B1 to B2 strictly dominates B2, we say B1 is the
immediate dominator of B2.

A dominator tree, abbreviated DT, is a tree whose nodes are the basic blocks of
the program, whose root is the program entry block, and in which the parent of each
block is that block’s immediate dominator. The dominance frontier [Cytron et al.
1991] of a block B, abbreviated DF(B), is the set of blocks not strictly dominated
by B and having at least one predecessor dominated by B. The iterated dominance
frontier [Cytron et al. 1991] of a block B, abbreviated DF+(B), is the smallest set
of blocks that contains DF(B) and is a fixed point under pointwise application of
DF(·).

2.2 SSA Form

In this section we give a brief review of the SSA form of program representation.
For greater detail, the reader is referred to Cytron et al. [1991].

Definition 1. A program is said to be in SSA form if each of its variables is
defined exactly once, and each use of a variable is dominated by that variable’s
definition.

This definition is strict enough that programs with nontrivial control flow require
some special consideration if they are to be put in SSA form. Hence we say that in
SSA form, the definition of a variable may be an assignment from a special operator
denoted φ which is used to capture the effects of control flow. The presence of an
assignment y ← φ(x(1), . . . , x(n)) in a basic block B means the following:

—B has exactly n predecessors in the control flow graph (one for each operand of
the φ),

—x(1), . . . , x(n) and y are variables in the program, and
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

Partial Redundancy Elimination in SSA Form · 631

—if control arrives in block B from its jth predecessor, y has the value of x(j) at
the beginning of B.

An important convention regarding φ operators is that for the purpose of the dom-
inance relation among uses and definitions of variables in the program, operands of
φ are regarded as occurring at the ends of their corresponding predecessor blocks,
while the assignment to the φ result occurs at the beginning of the block containing
the φ.

Given a program and its control flow graph, the program can be put in SSA
form by assigning a unique version to each definition of a variable and placing φ
operators defining additional versions in basic blocks that are reached by multiple
definitions of the same original variable. After such a transformation, each version is
viewed as a variable in its own right. Versions are traditionally denoted by applying
subscripts to the name of the original program variable, so SSA versions of variable
v will be denoted v1, v2, and so forth. Cytron et al. [1991] give an efficient algorithm
to put a program in SSA form using the minimum number of φ assignments.

In the remainder of this section, we discuss the use-definition (use-def) relation
and its connection with SSA form. The use-def relation is a relation between uses of
variables and definitions of (assignments to) variables in the program. In a use-def
graph representing this relation, there is an edge leading from each use of a variable
to every reaching definition for that use. In the following discussion we explain
that SSA is a factored form of the use-def graph [Wolfe 1996]. Additional details of
this connection between SSA form and the use-def relation are contained in Cytron
et al. [1991].

Toward defining the factored use-def graph, we make the simplifying assumption
that every definition is a killing definition, and let {d1, . . . , dn} be the set of defi-
nitions reaching some use u. There are use-def edges from u to each of d1, . . . , dn.
A basic block B is called a φ block (factoring point) for u if

—the beginning of B dominates u; and

—∃i1, i2, and paths P1, P2 such that

—i1 6= i2; and
—di1 is contained in the first node of P1, and di2 is contained in the first node

of P2; and
—B is the final node on both P1 and P2; and
—P1 and P2 have no node in common except B.

Cytron et al. showed that the set of φ blocks for the uses of an original program
variable is contained in the union of the iterated dominance frontiers of the blocks
containing real definitions of the variable [Cytron et al. 1991]. Now given the
control flow graph and the use-def relation for a variable v, we define the factored
use-def graph as follows. The nodes of v’s factored use-def graph are the uses and
definitions of v’s use-def relation plus a φ node for v in each basic block that is a
φ block for some use of v. Each of these φ nodes represents both the φ assignment
itself and the collection of φ operands in the φ block’s predecessor blocks. There is
an edge in v’s factored use-def graph from the node representing each use (including

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

632 · Robert Kennedy et al.

φ operands1) to the node representing the immediate dominating definition of v,
which may be a φ.

It is a straightforward exercise to verify that the factored use-def graph for a
program variable is equivalent to minimal SSA form for that variable. The cor-
respondence is the obvious one: each use of a given SSA version of a variable in
SSA form corresponds to an edge in the factored use-def graph between the node
corresponding to the use and the node corresponding to the unique definition for
that SSA version.

It is also well known and easy to check that the original use-def relation can
be recovered from the factored use-def graph by taking the transitive closure and
discarding those edges in the transitive closure that have a φ or φ operand as an
endpoint.

2.3 Foundation of Sparse PRE

In this section, we define several terms and outline the basis of the framework in
which we analyze redundancy. One goal of this section is to show connections
between our redundancy framework and SSA form for variables; these connections
underlie the intuition behind the SSAPRE algorithm’s ability to directly generate
its output in SSA form. For convenience in our definitions, we assume every basic
block in the control flow graph of the program being compiled is reachable from
the entry block and that the program exit is reachable from every basic block.

Definition 2. If E1 and E2 are occurrences of some computation E and there is
a control flow path from E1 to E2 containing nothing that may alter the value of
E, we say that E2 is redundant with respect to E1.

Our sparse approach to PRE relies on a representation that can directly expose
partial redundancy; such a representation is derived in the following discussion.
Suppose an occurrence E2 is redundant with respect to E1. We represent this
redundancy by a directed edge from E2 to E1.

Definition 3. Let E1 be an occurrence of some computation E, and let p be
some point in the program. If there is a control flow path from p to E1 containing
nothing that may alter the value of E and containing no occurrence of E between
p and E1, we say that E1 is exposed with respect to p.

Now let Ω = {E1, . . . , En} be the set of occurrences with respect to which an
occurrence E0 is exposed and redundant, and let A = {a1, . . . , am} be the set of
alterations of E’s value (e.g., assignments to operands of E if E is an expression)
with respect to which E0 is exposed. Let V = A∪Ω. A block B is called a Φ block
(factoring point) for E0 if

—the beginning of B dominates E0; and
—∃v1, v2 ∈ V and paths P1 and P2 such that

—v1 6= v2; and
—v1 is contained in the first node of P1, and v2 is contained in the first node of
P2; and

1Recall that φ operands are viewed as occurring at the ends of their corresponding predecessor
blocks.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

Partial Redundancy Elimination in SSA Form · 633

—B is the final node of both P1 and P2; and
—P1 and P2 have no node in common except B.

To take our next step in formulating our algorithm’s framework, we need an addi-
tional definition:

Definition 4. We say a computation is partially available at some point p in the
program if there is a control flow path leading to p from some real occurrence of the
computation and not crossing anything that may alter the value of the computation.

We say an occurrence ω is partially redundant if it is an occurrence of a computation
that is partially available just before ω.

In the same way that the literature uses a φ operator in SSA form to factor the
use-def relation for variables, the following paragraph will introduce a Φ opera-
tor that factors the redundancy relation for computation occurrences. Just as φ
operators are viewed as bona fide assignments to variables in SSA form, we will
regard instances of the factoring operator Φ and operands of these Φ’s as compu-
tation occurrences in their own right, and we will use the term “real occurrence”
to distinguish the occurrences of the computation that correspond to code in the
program from Φ and Φ operand occurrences. As in the case of φ operators and
their operands, we view each Φ as occurring at the beginning of the block in which
it appears, and we view operands of each Φ as occurring at the ends of their cor-
responding predecessor blocks. There can be operands of Φ that are not partially
redundant; these have no counterpart in SSA form, and we denote them by the
symbol ⊥.

Given a partially redundant real or Φ operand occurrence E0, we define the
representative occurrence for E0 as the nearest to E0 among those Φ or non-partially
redundant real occurrences that dominate E0. The reader can easily verify that such
a representative occurrence is well defined and unique.

Now given the control flow graph and the redundancy relation for a computation
E, we define the factored redundancy graph (FRG) as follows. The nodes of E’s
FRG are the real occurrences in E’s redundancy relation plus a Φ node for E
in each basic block that is a Φ block for some real occurrence of E. There is
an upward edge in the FRG from each partially redundant real occurrence and
each partially redundant Φ operand occurrence to its representative occurrence.
Figure 1 shows the upward edges in an example of how the FRG factors the edges
of the redundancy relation. The reverse of each upward edge is called a downward
edge. The set of occurrences made up of a representative occurrence and those
occurrences it represents is called a redundancy class. The reader may think of
redundancy classes as roughly analogous to variable versions in SSA form. Upward
edges correspond to use-def edges in SSA (i.e., the edges of the factored use-def
graph), and downward edges correspond to def-use edges in SSA. To underscore this
analogy, we will sometimes say that the representative occurrence for a redundancy
class defines the class and its members.

Clearly the FRG, being defined so similarly to the factored use-def graph, has
a good deal in common with SSA form. For example, the original redundancy
relation can be recovered from the FRG and the control flow graph in much the
same way as the full use-def relation is recovered from SSA form. As we will see, the

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

634 · Robert Kennedy et al.

E

?

E

Z
ZZ~

�
��=

?
�
�	

E

@
@R
E

6

�
�
�
�
���

S
S
S
S
S
So

B
B
B
B
B
BM

(a) without factoring

E

?

E

Z
ZZ~

�
��=

?

E ← Φ(E,E,⊥)

�
�	

E

@
@R
E

6

Z
Z

Z
Z}

Z
ZZ}

A
AK

(b) factored

� redundancy edge

� control flow edge

Fig. 1. Factoring of redundancy edges.

connections are deeper than an abstract analogy between the definitions and their
properties: the particular FRG for a computation is connected closely with SSA
form for the computation’s temporary variable after PRE (See Section 2.5 below).

2.4 Basics of PRE

We say that a computation is available at a point q in the program along path P if

—P is a path leading to the point q and
—the computation occurs at some point r on P with the property that between r

and q, P contains nothing that may alter the value of the computation.

Reiterating Definition 4, we say that a computation is partially available at q if
there exists a path along which the computation is available at q. A computation
is fully available at q if it is available at q along every path from the program entry
to q.

We say that a computation is anticipated at a point q along path P if

—P is a path beginning at q and
—the computation occurs at some point r on P with the property that between q

and r, P contains nothing that may alter the value of the computation.

A computation is partially anticipated at q if there exists a path along which the
computation is anticipated at q. A computation is fully anticipated at q if it is
anticipated at q along every path from q to the program exit. If a computation
is fully anticipated at q, we say the point q is down-safe with respect to that
computation [Knoop et al. 1994].

Following Knoop et al. [1992], we use the term placement to refer to the set of
points in the optimized program where a particular computation occurs. We say
that a placement is safe if optimization has not introduced new values to any path
in the program, i.e., if every inserted computation occurs at a point where the
computation is fully anticipated or fully available [Kennedy 1972]. This require-
ment is intended to prevent incorrect behavior of the optimized program in the
presence of computations that may cause exceptions (e.g., division by zero). Safety
is considered a fundamental requirement in the literature, and all proposed meth-
ods for eliminating partial redundancies adhere to this requirement, e.g., Morel
and Renvoise [1979], Chow [1983], Drechsler and Stadel [1988], Dhamdhere [1988],
Dhamdhere et al. [1992], Knoop et al. [1992], and Drechsler and Stadel [1993]. We
say that a placement is computationally optimal if no safe placement can result
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

Partial Redundancy Elimination in SSA Form · 635

E1

�
�
�
��

(fully E2
redundant)

@
@@R

�
��	

?
E3 (partially

redundant)

(a) before PRE

E1

�
�
�
��

(fully E2
redundant)

@
@@R

E4 (inserted)

�
��	

?
E3 (fully

redundant)

(b) after insertion by PRE

Fig. 2. Full and partial redundancies.

in fewer occurrences of the computation along any path from entry to exit in the
program. Computational optimality is an important requirement in partial redun-
dancy elimination, but several early methods, e.g., Morel and Renvoise [1979] and
Chow [1983], lacked this property. The property was later achieved for these meth-
ods by requiring the insertion of synthetic basic blocks along certain control flow
edges (see the beginning of Section 3).

Consider the redundancies associated with a computation E that yields a value
in the procedure being compiled. An occurrence of E is fully redundant if E is
fully available just before the point of that occurrence in the program, and fully
redundant computations can be safely removed by simply deleting them. E2 in
Figure 2(a) is a fully redundant occurrence. An occurrence of E is partially re-
dundant if E is partially available just before the point of the occurrence. E3 in
Figure 2(a) is a partially redundant (but not fully redundant) occurrence. Eliminat-
ing strictly partial redundancies involves inserting new computations of E (like E4

in Figure 2(b)) to render occurrences fully redundant so that they can be deleted.
Figure 3 shows a larger example program in SSA form before and after optimum
PRE has been performed.

When the computations under consideration are expressions that compute values
in the program, deleted occurrences are replaced by loads from a temporary variable
introduced during optimization. To ensure that this temporary contains the correct
value when it is accessed in the optimized program, the value of the expression is
saved to the temporary at a subset of the points where the expression is evaluated.
An important practical concern is the exacerbation of register pressure that can
result from introducing these temporaries. To address this concern, some work
in PRE [Chow 1983; Dhamdhere 1988; Drechsler and Stadel 1988] made heuristic
modifications to the system of data flow equations introduced in Morel and Ren-
voise [1979], but none of these techniques, which are based directly on the work of
Morel and Renvoise, achieved the goal of minimizing the lifetimes of the introduced
temporaries. In particular, all those PRE schemes would perform code motion that
introduced an unnecessary temporary without removing any redundancy in exam-
ples like our Figure 9.2 Lifetime optimality of the introduced temporary variables
subject to the constraint of computational optimality was first achieved in Knoop
et al. [1992]. Other research that achieves the same result includes Drechsler and

2Algorithms based on the framework of Morel and Renvoise make the following harmful transfor-
mation on the example of Figure 9: a + b is introduced into blocks 2 and 4, and a + b is deleted
from block 6.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

636 · Robert Kennedy et al.

Stadel [1993] and the present work.

2.5 A Central Observation

Suppose that computationally optimum PRE has been performed, replacing ex-
pression E with uses of the temporary variable t in places where computations of
E were deleted. The central observation leading to our algorithm for PRE is the
following:

Observation 1. Every edge in the use-def relation for t corresponds directly to a
redundancy edge for E, or to a redundancy edge introduced during PRE between
a deleted occurrence of E and an inserted computation of E. Some redundancy
edges may not correspond to use-def edges for the temporary; such an edge either
represents redundancy that cannot safely be eliminated or has the property that
the expression value turns out to be available at both the head and the tail of the
edge.

Therefore, we can imagine that the task of our PRE algorithm is to begin by
determining the set of redundancy edges for each expression, and then refining
these edge sets to form the use-def relation for each expression’s temporary variable.
Notice that the use-def relation for an expression’s temporary tells us everything
about how to transform the program: use points are those points where we replace
a computation of the expression with a use of the temporary, and definition points
are places where we compute the expression’s value and save it to the temporary.

By closely connecting the redundancy relation for an expression with the use-
def relation for the temporary variable introduced by PRE for that expression,
Observation 1 also implicitly connects the FRG for the expression to the SSA form
for the optimized expression’s temporary variable. This connection is the main
property allowing our algorithm to efficiently produce its output in SSA form.

2.6 The FRG in SSAPRE

The analysis performed by our SSAPRE algorithm operates on the FRG for each of
the expressions being optimized, so the algorithm incorporates a method for con-
structing the FRG. Because the FRG representation shares many of the character-
istics of SSA form, the method to build the FRG closely parallels the standard SSA
construction algorithm. The first two steps of the SSAPRE algorithm construct the
FRG, with ⊥ operands of Φ indicating those paths on which the expression is not
evaluated. The first step, called Φ-Insertion, inserts Φ’s at the iterated dominance
frontier of each occurrence of E. In the second step, called Rename, we assign re-
dundancy class numbers to occurrences of E according to the values they compute
and their positions in the program.

The Φ’s in the FRG serve as anchor points for placement analysis in PRE. Place-
ment analysis involves two separate data flow analysis steps. The third step in
SSAPRE, DownSafety, performs backward data flow propagation on the FRG to
identify the Φ’s that are down-safe. The fourth step, WillBeAvail, performs forward
data flow propagation on the graph to predict the Φ’s where the computation E
will be made available following insertions for PRE. Using these data flow results,
the fifth step, Finalize, can pinpoint the locations in the program where the com-
putation is to be inserted. Finalize also identifies occurrences of E that are fully
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

Partial Redundancy Elimination in SSA Form · 637

redundant taking into account the effects of these insertions, and refines the FRG
to a form isomorphic to the SSA graph for t. At this point, the optimized output
is completely determined and is represented by the updated FRG. The last step,
CodeMotion, transforms the code to form the optimized program. The temporary
t is introduced to save and reuse the values of E corresponding to instances of
redundancy eliminated by SSAPRE.

Although partial redundancy elimination is not among the optimizations treated
by Choi et al. [1991], much of our algorithm can be cast in their sparse data flow
evaluation graph framework. Our FRG for each expression is a “flow graph” in their
terminology, and the DownSafety and WillBeAvail steps of SSAPRE are examples
of a class of procedures they call “evaluations.”

3. SSAPRE ALGORITHM

In this section, we describe the SSAPRE algorithm. Like authors of earlier work
[Rosen et al. 1988; Dhamdhere et al. 1992; Knoop et al. 1992; Drechsler and Stadel
1993], we assume all critical edges in the control flow graph have been removed
by inserting empty basic blocks at such edges.3 Breaking these edges allows us
to model insertions as edge placements, even though we insert at the ends of the
predecessor blocks. The idea of inserting basic blocks only on critical edges to
expand opportunities for safe code motion appears to have originated in Rosen
et al. [1988]. Drechsler and Stadel [1988] and Dhamdhere [1988] proposed the
related technique of splitting edges “on demand.”

We assume the input is a program in SSA form. We assume prior computation
of the dominator tree (DT) and iterated dominance frontiers (DF+) with respect
to the control flow graph of the program. These structures must already have been
computed and used if the program was put into SSA form using the algorithm of
Cytron et al. [1991]. Finally, we make the following two simplifying assumptions
about the input SSA program:

(1) Each φ assignment has the property that its left-hand side and all of its operands
are versions of the same original program variable; and

(2) The live ranges of different versions of the same original program variable do
not overlap.

These assumptions are guaranteed to hold immediately after a program is put into
SSA form [Cytron et al. 1991], and each of them can be relaxed at the cost of more
difficult presentation and implementation of our algorithm. The interested reader
is invited to investigate the changes involved in relaxing these assumptions.

We assume all expressions are represented as trees with leaves that are either
constants or SSA-renamed variables. SSAPRE is applied to each lexically identified
expression4 independently, regardless of subtree nesting relationships. In Section 5,

3A critical edge is one whose tail block has multiple successors and whose head block has multiple
predecessors.
4Computations belong to the same lexically identified expression if they apply exactly the same
operator to exactly the same operands; the SSA versions of the variables are ignored in identifying
expressions. For example, a1 + b1 and a2 + b2 are lexically identical forms, so they are instances
of the same lexically identified expression.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

638 · Robert Kennedy et al.

a1

1

a2 �(a4; a1)

2

a2 + b1

a3

3

a4 �(a2; a3)

a4 + b1

4

exit
5

a1

t1 a1 + b1
1

a2 �(a4; a1)

t2 �(t4; t1)
2

t2

a3

t3 a3 + b1
3

a4 �(a2; a3)

t4 �(t2; t3)

t4
4

exit
5

(a) before optimization (b) after optimization

Fig. 3. Example Program P (in SSA form) before and after optimization.

we describe a strategy that exploits the nesting relationship in expression trees
to obtain greater optimization efficiency under SSAPRE. Indirect loads are also
candidates for SSAPRE, but since they reference memory and can have aliases, the
indirect variables have to be in SSA form in order for SSAPRE to handle them.
Using the HSSA form presented in Chow et al. [1996] allows SSAPRE to uniformly
handle indirect loads together with other expressions in the program.

In our description of the base algorithm, the initial SSA construction steps for
expressions, Φ-Insertion and Rename, work on all expressions in the program si-
multaneously while passing through the entire program. The remaining steps of
the algorithm can be efficiently applied to each expression separately. In Section 5,
we describe an alternative scheme that allows all six steps of the algorithm to be
applied to each lexically identified expression separately.

We use the program shown in Figure 3 as a running example to illustrate the
various steps, and we call it Program P to distinguish it from additional examples
that are interspersed to illustrate situations that do not appear in Program P.5 Our
examples assume we are working on the expression a+ b in the program.

Our presentation of SSAPRE is organized according to the six steps of the algo-
rithm. As we describe each step, we also state and prove various lemmas which we
use in establishing the theorems about SSAPRE in Section 4.

5For simplicity and compactness, we show the control flow graphs for our examples with critical
edges; the examples are chosen so that breaking these edges would make no material difference.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

Partial Redundancy Elimination in SSA Form · 639

a1 + b1

1

a2

2

a3 �(a1; a2)

�(� ; �)

a3 + b1
3

Fig. 4. Φ insertion due to φ for an expression operand.

Before we present the details of SSAPRE, we establish two items of notation. We
will use the notation E(j) to refer to the jth lexically identified expression, and we
will denote by F the set of Φ operators in the FRG for expression E(j). We omit
any index from the symbol F ; no confusion will result because the steps of SSAPRE
referring to F handle a single expression at a time, so F will be understood to refer
to the current expression under consideration.

3.1 The Φ-Insertion Step

A Φ for an expression is needed whenever different values of the same expression
reach a common point in the program. There are two different situations that cause
Φ’s for expressions to be placed.

First, when an expression appears, we insert a Φ at its iterated dominance frontier
(DF+) as in Cytron et al. [1991], because the occurrence may come to correspond
to a definition of that expression’s temporary.

The second situation that causes insertion of Φ’s is when there is a φ for any
variable contained in the expression, because such a φ indicates that an alteration
of the expression reaches the merge point. In Figure 4, the Φ at block 3 is caused by
the φ for a in the same block, which in turn reflects the assignment to a in block 2.
Figure 5 shows our running example program after the Φ-Insertion step. Both Φ’s
in that figure are justified by real occurrences of a + b and by the presence of φ’s
for the variable a.

Other algorithms for SSA φ placement with linear time complexity can also
be used to place Φ’s [Johnson et al. 1994; Sreedhar and Gao 1995]. We adapt
the algorithm from Cytron et al. [1991] because it is easier to understand and
implement.

To make the details of the following lemma precise, we establish the following
definition. Intuitively it is intended to capture the set of points in the program
where the “current value” of an expression may change.

Definition 5. An evaluation of expression E(i) is one of the following:
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

640 · Robert Kennedy et al.

a1

1

�(� ; �)

a2 �(a4; a1)
2

a2 + b1

a3

3

�(� ; �)

a4 �(a2; a3)

a4 + b1
4

exit
5

Fig. 5. Program P after Φ-Insertion.

—a real occurrence of E(i);

—a Φ occurrence for E(i);

—an assignment to an operand of E(i).

We say an evaluation of E(i) reaches a point p in the program if there is a path in
the control flow graph from the evaluation to p that does not encounter any other
evaluation of E(i). To distinguish assignments to expression operands from other
evaluations, we say that assignments to operands of the expression have value ⊥.

Lemma 1 (Sufficiency of Φ-Insertion). If B is a basic block where no Φ is
inserted for the expression E(i), exactly one evaluation of E(i) can reach the entry
to B.

Proof. Suppose two different evaluations of the expression, ψ1 and ψ2, reach
the entry to B. It cannot be the case that ψ1 and ψ2 both dominate B; suppose
without loss of generality that ψ1 does not dominate B. Now there exists a block
B0 that dominates B, is reached by ψ1 and ψ2, and lies in DF+(ψ1) (n.b., B0 may
be B). If ψ1 is a real occurrence or a Φ, the Φ-Insertion step must have placed a Φ
in B0, contradicting the proposition that ψ1 reaches B. If on the other hand ψ1 is
an assignment to an operand ν of the expression (so ⊥ is among the values reaching
B), there must be a φ for ν in B0 by the correctness of the input SSA form. Hence
Φ-Insertion must have placed a Φ in B0, once again contradicting the proposition
that ψ1 reaches B.
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

Partial Redundancy Elimination in SSA Form · 641

Section 5.3 describes a more efficient implementation that omits some Φ operators
promised by Lemma 1, but that are unnecessary and could not participate in any
optimization because the corresponding expressions are not partially anticipated
where the omissions occur.

3.2 The Rename Step

The Rename step assigns redundancy class numbers to expression occurrences. The
redundancy class numbering has the following two important properties. First,
occurrences that have identical class numbers have identical values. Second, any
control flow path that includes two different class numbers for some expression must
cross an assignment to an operand of the expression or a Φ.

We apply the SSA Renaming algorithm as given in Cytron et al. [1991], in which
we conduct a preorder traversal of the dominator tree, but with the following mod-
ification. In addition to a renaming stack for each variable in the program, we
maintain a renaming stack for every expression; entries on these expression stacks
are popped as our dominator tree traversal backtracks past the blocks that contain
them. Maintaining the variable and expression stacks together allows us to de-
cide efficiently whether two occurrences of an expression should be given the same
redundancy class number.

There are three kinds of occurrences of expressions in the program: (1) the occur-
rences in the original program, which we call real occurrences; (2) the Φ’s inserted
in the Φ-Insertion step; and (3) Φ operands, which are regarded as occurring at
the ends of the predecessor blocks along the corresponding edges. The Rename
algorithm performs the following steps upon encountering an occurrence q of the
expression E(i). If q is a Φ, we assign q a new class number. Otherwise, we check
the current version of every variable in E(i) (i.e., the version on the top of each
variable’s rename stack) against the version of the corresponding variable in the
occurrence on the top of E(i)’s rename stack. If all the variable versions match,
we assign q the same class as the top of E(i)’s stack and record the upward edge
between q and its representative occurrence by writing a reference to the represen-
tative occurrence in the field def (q). If any of the variable versions does not match,
we have two cases: (a) if q is a real occurrence, we assign q a new class number; (b)
if q is a Φ operand, we assign the special class ⊥ to that Φ operand to denote that
the value of E(i) is unavailable at that point. Finally, we push q on E(i)’s stack
and proceed. Figure 6 shows the initial graph formed after our example has been
renamed. The nodes in the FRG are annotated with their assigned redundancy
class numbers in square brackets.

Lemma 2 (Correctness of Renaming). If two occurrences of the same ex-
pression are assigned to the same class by Rename, the expression has the same
value at those two occurrences.

Proof. This lemma follows directly from the fact that the Rename step assigns
two occurrences of an expression to the same class only if all the SSA versions of
their expression operands match. We appeal to the single-assignment property and
the correctness of the SSA renaming algorithm for variables [Cytron et al. 1991] to
complete the proof.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

642 · Robert Kennedy et al.

a1

1
.
....
...
...
...
....

..................

[1] �(2;?)

a2 �(a4; a1)
2

.

....

...

...

...

....

..................

.

...

...

...

...

..

...

.

.....

....

....

....

......

............

..................

..................

..................

..................

..................

..................

a2 + b1 [1]

a3

3
.
....
...
....
...
...

..................

[2] �(1;?)

a4 �(a2; a3)

a4 + b1 [2]
4

.............

.............

.............

............................
........
.......

....

........
...

.....
.....
.....

....
....
....
...

...

....

...

...

..

..

...

..

...

..

...

..

..

..

..

...

..

..

..

..

..

..

..

..

..

.

..

..

..

.

..

..

..

.

.

..

.

..

..

.

..

..

..

.

.

..

.

..

.

..

.

..

...

..

.

..

.

..

.

..

.

.

..

..

..

..

..

..

..

.

..

..

.

..

..

..

.

..

.

..

..

..

..

..

..

..

.

..

..

..

..

...

..

..

...

..

..

...

..

...

...

...

...

..

...

.

...

....

...

...

..

...

....
....
....

....
.....
......

.....
.........
.

...............
.........................

..............

..............

.

...

...

...

....

...

.

..................

..................

exit
5

...

..................
..
..
..
...
.......
.

...

..................
..
..
..
...
.......
.

.....................
..
..
..
...
........

..

..

..

...

........

....
.................
..
..
...
...
.......

...

..................
..
..
..
...
.......
.

..............
..............
..............
..............
..............
..............
.............
..............
.............
..............
.............
.............
..............
.............
.............
.............
.............
.............
.............
.............
.............
.............
..........

..
..

...
...

...
...

..
..
..
.................
.................
.....................

.....................
.........................

.................................
..

......................................
............................
.............

...
..............................
.......................
...................
.................
...............
...............
.............
.............................
....................

..............
...............
..............
..............
.............
.............
.............
.......
..................
.................... initial FRG

(upward
edges shown)

Fig. 6. The initial FRG for a+ b in Program P.

Lemma 3 (Assigned Classes Capture All the Redundancy). If two oc-
currences Ex, Ey are assigned class numbers x, y by Rename, exactly one of the
following holds:

—no control flow path can reach from Ex to Ey without passing through a real
(i.e., non-φ) assignment to an operand of the expression (meaning that there is
no redundancy between the occurrences); or

—there is a path (possibly empty, in which case x = y) of upward edges in the FRG
from the representative of class y to the representative of class x (implying that
the redundancy between Ex and Ey is exposed to the algorithm).

Proof. Suppose there is a control flow path P from Ex to Ey that does not pass
through any assignment to an operand of the expression. Our proof will proceed
by induction on the number of Φ’s for the expression traversed by P .

If P encounters no Φ, then we have x = y, establishing the basis for our induction.
If P hits at least one Φ, the last Φ on P defines Ey . Now we apply the induction
hypothesis to that part of P up to the corresponding operand of that Φ.

To save space, we do not prove that the object constructed by the Φ-Insertion
and Rename steps fulfills the definition of FRG given in Section 2.3. We leave
that proof as a straightforward exercise for the interested reader because it is not
required to establish the correctness of our algorithm.
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

Partial Redundancy Elimination in SSA Form · 643

a1 + b1 [1]

1

[2] �(1;?)
2

a1 + b1 [2]
3

[3] �(2;?)

4

a1 + b1 [3]
5

exit

6

Fig. 7. Propagation in the DownSafety step.

Section 5.4 describes in detail an implementation of the Rename step that derives
greater efficiency by more thoroughly exploiting the SSA form of the input program.

3.3 The DownSafety Step

One criterion required for PRE to insert a computation is that the computation
is down-safe (or anticipated) at the point of insertion [Kennedy 1972; Morel and
Renvoise 1979; Knoop et al. 1994]. This condition serves to ensure both that
inserted computations do not introduce exceptions to paths that lacked them before
optimization, and that inserted computations do not introduce new redundancy to
the program. In the FRG constructed by Rename, each node either represents a
real occurrence of the expression or is a Φ. SSAPRE insertions are necessary only at
Φ operands, and the absence of critical edges in the control flow graph implies that
down-safety at a Φ operand is equivalent to down-safety at the Φ itself. Therefore
down-safety needs to be computed only at points where Φ’s appear. Using the
factored redundancy graph, down-safety can be sparsely computed by propagation
along the upward edges.

A Φ is not down-safe if there is a control flow path from that Φ along which
the expression is not evaluated before program exit or before being altered by
redefinition of one of its variables. Except for loops with no exit, this can happen
only due to one of the following cases: (a) there is a path to exit along which the
Φ’s redundancy class does not occur; or (b) there is a path to exit along which
the only occurrence of the Φ’s redundancy class is as an operand of a Φ that is
not down-safe. Case (a) represents the initialization for our backward propagation
to compute down-safety; all other Φ’s are initially marked down safe. DownSafety
propagation is based on case (b): beginning at each Φ that is initially not marked
down safe, the algorithm searches along upward edges that do not traverse any real
occurrence of the expression, clearing the down safe flag for each Φ visited. Since

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

644 · Robert Kennedy et al.

procedure Reset downsafe(X)
if (has real use(X) or def (X) is not a Φ)

return
f ← def (X)
if (not down safe(f))

return
down safe(f)← false
for each operand ω of f do

Reset downsafe(ω)
end Reset downsafe

procedure DownSafety
for each f ∈ F do

if (not down safe(f))
for each operand ω of f do

Reset downsafe(ω)
end DownSafety

Fig. 8. Algorithm for DownSafety.

traversing a real occurrence of the expression blocks the propagation, the algorithm
assumes each Φ operand is marked with a flag has real use that is true when the
path to the Φ operand from its representative occurrence crosses a real occurrence
of the same redunancy class.

It is convenient to perform initialization of the case (a) down safe and computa-
tion of the has real use flags during a dominator-tree preorder pass over the FRG.
Since Rename conducts such a pass, we can include these calculations in the Re-
name step with minimal overhead. Initially, all down safe flags are true, and all
has real use flags are false. When Rename assigns a new class to a real occurrence
of expression E(i), sets an operand of a Φ for E(i) to ⊥, or encounters a program
exit, it examines the occurrence on the top of E(i)’s stack before pushing the cur-
rent occurrence. If the top of the stack is a Φ occurrence, Rename clears that Φ’s
down safe flag because the class it represents does not occur along the path to the
current occurrence (or exit). When Rename assigns a class to a Φ operand, it sets
that operand’s has real use flag if and only if a real occurrence in the same class
appears at the top of the rename stack.

In the example of Figure 7, the Φ in block 4 is marked not down safe during
initialization by the Rename step. The DownSafety step propagates a false value
for down safe to the Φ in block 2 along the upward edge between the appearance
of class 2 as an operand of the Φ in block 4 and its definition by the Φ in block 2.
Figure 8 gives the DownSafety propagation algorithm. In our running example
program (Figure 6), both Φ’s are down-safe.

Lemma 4 (Correctness of down safe). A Φ is marked down safe after
DownSafety if and only if the expression is fully anticipated at that Φ.

Proof. We first note that each Φ marked not down safe during Rename is
indeed not down-safe. The SSA renaming algorithm has the property that every
definition dominates all its uses. Suppose that a Φ appears on the top of the stack
when Rename creates a new class for a real occurrence or a Φ operand or encounters
a program exit. In the case where a program exit is encountered, the Φ is obviously
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

Partial Redundancy Elimination in SSA Form · 645

not down-safe because there is a path in the dominator tree from the Φ to exit
containing no use of the Φ. Similarly, if Rename assigns a new class to a real
occurrence, it does so because some expression operand ν has a different version in
the current occurrence from its version at the Φ. Therefore there exists a path in
the dominator tree from the Φ to the current occurrence along which there is an
assignment to ν. By Lemma 1, at least one such assignment is a real assignment
(not a φ). Hence the expression is not fully anticipated at the Φ on the top of the
stack.

Next we make the observation that any Φ f whose down safe flag gets cleared
during the DownSafety step is not down-safe, since there is a path of upward edges
in the FRG from a Φ that is not down-safe to f , where no edge in the path crosses
any real use of the expression value. Indeed one such path appears on the recursion
stack of the Reset downsafe procedure at the time the down safe flag is cleared.

Finally, we need to show that all the Φ’s that are not down-safe are so marked
at the end of DownSafety. This fact is a straightforward property of the depth-first
search propagation performed by Reset downsafe.

3.4 The WillBeAvail Step

The WillBeAvail step has the task of predicting whether the expression will be
available at each Φ occurrence following insertions for PRE. In the Finalize step,
insertions will be performed at incoming edges corresponding to Φ operands at
which the expression will not be available (without that insertion), but the Φ’s
will be avail predicate is true. WillBeAvail begins by computing the set of Φ occur-
rences where the expression value can safely be made available. Next, WillBeAvail
effectively computes the set of Φ’s where the expression value must be available in
any computationally optimal placement; it is exactly these Φ’s where the expression
will be made available by SSAPRE, and the resulting placement minimizes the live
ranges of the introduced expression temporary.

The WillBeAvail step consists of two forward propagation passes performed se-
quentially, in which we conduct simple reachability search in the FRG for each
expression. The first pass computes the can be avail predicate for each Φ by first
initializing it to true for all Φ’s. It then begins with the “boundary” set of Φ’s at
which the expression cannot be made available by any down-safe set of insertions.
These are Φ’s that do not satisfy the down safe predicate and have at least one ⊥-
valued operand. The can be avail predicate is set to false for every such Φ, and the
false value is propagated from these nodes to others that are not down-safe and that
are reachable along downward FRG edges, excluding edges at which has real use
is true. After this propagation step, can be avail is false for a Φ if and only if no
down-safe placement of computations can make the expression available.

The Φ’s where can be avail is true together designate the range of down-safe
program areas for insertion of the expression, plus areas that are not down-safe but
where the expression is fully available in the original program.6

6The entry points to this region (the ⊥-valued Φ operands) can be thought of as SSAPRE’s
earliest insertion points. These may be later than the earliest insertion points in Knoop et al.
[1992] and Drechsler and Stadel [1993] because their bit-vector schemes allow earliest insertion at
nonmerge blocks.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

646 · Robert Kennedy et al.

a1 + b1 [1]

1 a2

2

[2] �(1;?)

3

4

a3 �(a1; a2; a3)

[3] �(2;?; 3)

5

a3 + b1 [3]

6

exit

7

Fig. 9. Example showing the role of later.

The second pass works within the region computed by the first pass to deter-
mine the Φ’s where the expression will be available following the insertions we will
actually make, which implicitly determines the latest (and final) insertion points.
This pass computes the information responsible for minimizing the live ranges of
the introduced expression temporary, and is analogous to the computation of the
predicate LATERIN in Drechsler and Stadel [1993]. It works by propagating the
later predicate, which it initializes to true wherever can be avail is true. It then
begins with the Φ operands corresponding to real occurrences of the expression
in the program, and propagates a false value for later forward to those points be-
yond which insertions cannot be postponed (moved downward) without introducing
unnecessary new redundancy.7

At the end of the second pass, will be avail for a Φ is given by

will be avail = can be avail ∧ ¬later.

In the example program of Figure 9, the Φ in block 5 satisfies down safe,
can be avail, and later. Therefore, although the expression value could safely be
made available by insertions in blocks 2 and 4, the later predicate prevents such
insertion, which would eliminate no redundancy and would unnecessarily extend
the live range of the expression temporary. In our running example (Figure 6),
both Φ’s satisfy will be avail.

For convenience, we define a predicate to indicate those Φ operands where we will
perform insertions: We say insert holds for a Φ operand if and only if the following

7The result is that those Φ’s satisfying later are exactly those that are can be avail but not
reachable from any real occurrence along downward FRG edges.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

Partial Redundancy Elimination in SSA Form · 647

procedure Reset can be avail(g)
can be avail(g)← false
for each f ∈ F with operand ω with g = def (ω) do

if (not has real use(ω)) {
if (not down safe(f) and can be avail(f))

Reset can be avail(f)
}

end Reset can be avail

procedure Compute can be avail
for each f ∈ F in the program do

can be avail(f)← true
for each f ∈ F in the program do

if (not down safe(f) and
can be avail(f) and
∃ an operand of f that is ⊥)

Reset can be avail(f)
end Compute can be avail

procedure Reset later(g)
later(g)← false
for each f ∈ F with operand ω with g = def (ω) do

if (later(f))
Reset later(f)

end Reset later

procedure Compute later
for each f ∈ F do

later(f)← can be avail(f)
for each f ∈ F do

if (later(f) and
∃ an operand ω of f such that

(def (ω) 6= ⊥ and has real use(ω)))
Reset later(f)

end Compute later

procedure WillBeAvail
Compute can be avail
Compute later

end WillBeAvail

Fig. 10. Algorithm for WillBeAvail.

hold:

—the Φ satisfies will be avail; and
—the operand is ⊥; or has real use is false for the operand, and the operand is

defined by a Φ that does not satisfy will be avail.

Figure 10 gives the WillBeAvail propagation algorithms.
Recall that the term placement refers to the set of points in the program where

a particular expression’s value is computed.

Lemma 5 (Correctness of can be avail). A Φ satisfies can be avail if and
only if some safe placement of computations makes the expression available imme-
diately after the Φ.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

648 · Robert Kennedy et al.

Proof. Let f ∈ F be a Φ satisfying can be avail. If f satisfies down safe, the
result is immediate because it is safe to insert computations of the expression at
each of f ’s operands. If f is not down-safe and satisfies can be avail, note that the
expression is available in the unoptimized program at f because there is no path
to f from a Φ with a ⊥-valued operand along downward edges lacking has real use
in the FRG.

Now let f ∈ F be a Φ that does not satisfy can be avail. When the algorithm
reset this can be avail flag, the recursion stack of Reset can be avail gave a path
bearing witness to the fact that no safe set of insertions can make the expression
available at f .

Lemma 6 (Correctness of later). A can be avail Φ satisfies later after Will-
BeAvail if and only if there exists a computationally optimal placement under which
the expression value is not available immediately after the Φ.

Proof. By inspection of the Compute later algorithm, the set of can be avail
Φ’s not satisfying later after WillBeAvail is exactly the set of can be avail Φ’s reach-
able along downward edges in the FRG from a can be avail Φ with an operand
satisfying has real use. Let P be a path of downward edges in the FRG from
a can be avail Φ with an operand satisfying has real use to a given f ∈ F with
later(f) = false and can be avail(f) = true. We will prove by induction on the
length of P that f must be made available by any computationally optimal place-
ment.

If f is not down-safe, the fact that f is can be avail means all of f ’s operands
must be fully available in the unoptimized program. They are therefore trivially
available under any computationally optimal placement, making the result of f
available as well.

In the case where f is down-safe, if P contains no edges there is a has real use
operand of f . Such an operand must be fully available in the optimized program,
so any insertion below f would be redundant with respect to the real occurrence(s)
corresponding to that operand, contradicting computational optimality. Since f is
down-safe, there already exist real occurrences in the unoptimized program that are
redundant with respect to the real occurrences corresponding to the operand, and
any computationally optimal placement must eliminate that redundancy. The way
to accomplish this is to perform insertions that make the expression fully available
at f .

If f is down-safe and P contains at least one edge, we apply the induction hy-
pothesis to the Φ defining the operand of f corresponding to the final edge on P to
conclude that that operand must be made available by any computationally optimal
placement. As a consequence, any computationally optimal placement must make
f available by the same argument as in the basis step (previous paragraph).

The following lemma shows that the will be avail predicate computed by Will-
BeAvail faithfully corresponds to availability in the program after insertions are
performed for Φ operands satisfying insert.

Lemma 7 (Correctness of will be avail). The union of the set of insertions
chosen by SSAPRE with the set of real occurrences makes the expression available
immediately after a Φ if and only if that Φ satisfies will be avail.
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

Partial Redundancy Elimination in SSA Form · 649

Proof. We establish the “if” direction with a simple induction proof showing
that if there is some path leading to a particular Φ in the optimized program along
which the expression is unavailable, that Φ does not satisfy will be avail. Let Q(k)
be the following proposition:

For any f ∈ F , if there is a path P(f) of k downward edges in the FRG
beginning with ⊥, passing only through Φ’s along edges that do not
satisfy has real use ∨ insert, and ending at f , f is not will be avail.

Q(0) follows directly from the fact that (a) f has a ⊥-valued operand and (b) no
insertion is performed for any operand of f , so f is not marked will be avail. The
fact that f has a ⊥-valued operand implies that such an insertion would be required
to make f available.

Now to see Q(k) for k > 0, notice that Q(k − 1) implies that the operand of f
corresponding to the final edge of P(f) is defined by a Φ that is not will be avail,
and there is no real occurrence of the expression on the control flow path from
that defining Φ to the operand of f . Since we do not perform an insertion for that
operand, f cannot satisfy will be avail.

To establish the “only if” direction, suppose f ∈ F does not satisfy will be avail.
Either f does not satisfy can be avail or f satisfies later. In the former case, f is not
available in the optimized program because the insertions performed by SSAPRE
are down-safe. In the latter case, f was not processed by Reset Later, meaning
that it is not reachable along downward edges from a Φ satisfying will be avail.
Therefore, insertion above f would be required to make f ’s result available, but f
is not will be avail; so the algorithm performs no such insertion.

3.5 The Finalize Step

The Finalize step plays the role of transforming the factored redundancy graph to
the optimized form that reflects insertions and in which no Φ operand is ⊥. The
Finalize step consists of two parts, Finalize 1 and Finalize 2. Finalize 1 performs
the following tasks:

—Each real occurrence of the expression is marked with a flag called reload to indi-
cate whether it should be computed on the spot or reloaded from the temporary.

—For Φ’s where will be avail is true, insertions are performed at the incoming edges
that correspond to Φ operands at which the expression is not available.

—Φ’s whose will be avail predicate is true may become φ’s for t. Φ’s that are
not will be avail will not be part of the SSA form for t, and FRG edges from
will be avail Φ’s that reference them are updated to refer to other (real or in-
serted) occurrences.

—The FRG structure is updated to reflect the factored use-def relation for the
expression temporary in the optimized program. This restructuring is accom-
plished by resetting the def field of each operand of a Φ satisfying will be avail
and each real occurrence that will be reloaded from the temporary so that these
def fields refer to the expression occurrences that will become the definitions of
the corresponding SSA versions of the temporary.

The following tasks are the responsibility of Finalize 2 :
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

650 · Robert Kennedy et al.

a1
1

a2
2

a3 �(a1; a2)

[1] �(?;?)
3

a3 + b1 [1]

a3 + b1 [1]
4

a3 + b1 [1]

a3 + b1 [1]
5

Fig. 11. Example showing two available definitions for redundancy class 1.

—Each real occurrence that is not reloaded from the temporary is marked with a
save flag according as the expression value should be saved to the temporary.

—Extraneous Φ’s are removed.

Finalize 1 creates a table Avail def (for available definitions) to perform the first
three of the above tasks. The indices into this table are the redundancy class num-
bers for the current expression. Avail def [x] will point to the expression occurrence
that defines the value of occurrences in redundancy class x when each reload of class
x is seen. This defining occurrence must be either (a) a real occurrence or (b) a
Φ for which will be avail is true. Finalize 1 performs a preorder traversal of the
dominator tree of the program control flow graph. In the course of this traversal
it will visit each representative occurrence whose value will be saved to a version
of the temporary, ty, before it visits the occurrences that will reference ty; such a
reference is either (a) a redundant computation that will be replaced by a reload
of ty or (b) a use of class x as a Φ operand that will become a use of ty as a φ
operand. Although the processing order of Finalize is modeled after the standard
SSA rename step [Cytron et al. 1991], Finalize does not require any renaming stack
because SSA versions have already been assigned, and only limited changes can be
needed.

Initially all the entries of Avail def are ⊥. In the course of its traversal, Finalize
will process occurrences as follows:

(1) Φ: If will be avail is false, nothing needs to be done, since this Φ will not figure
in the SSA form for the real temporary. Otherwise, we must be visiting class
x for the first time; we set Avail def [x] to this Φ.

(2) Real occurrence: If Avail def [x] is ⊥, we are encountering for the first time a
point where a value of occurrences in class x will be available. If Avail def [x] is
set to an occurrence that does not dominate the current occurrence, the current
occurrence is also a definition of class x. Figure 11 shows how this situation
can arise: we have a Φ in block 3 that does not satisfy will be avail, so each
branch along which the Φ’s class number is used must have its own available
definition and its own store to the expression temporary. The class represented

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

Partial Redundancy Elimination in SSA Form · 651

procedure Finalize 1
for each redundancy class x of the current expression do

Avail def [x]← ⊥
for each occurrence X of the current expression in preorder DT traversal order do {
x← class(X)
if (X is a Φ occurrence) {

if (will be avail(f))
Avail def [x]← f

}
else if (X is a real occurrence)

if (Avail def [x] is ⊥ or
Avail def [x] does not dominate X) {

reload(X) ← false
Avail def [x]← X
}
else {

reload(X)← true
def (X)← Avail def [x]
}

else { /∗ X is a Φ operand occurrence ∗/
let f be the Φ in the successor block of this operand
if (will be avail(f))

if (X satisfies insert) {
insert the current expression at the end of the block containing X
def (X)← inserted occurrence

}
else

def (X)← Avail def [x]
}
}

end Finalize 1

Fig. 12. Algorithm for the first part of Finalize.

by the Φ will therefore correspond to two different versions of the expression
temporary t in our example. If Avail def [x] is either ⊥ or an occurrence that
does not dominate the current occurrence, we update Avail def [x] to the current
occurrence. Otherwise, the current occurrence X is a use of an available value
for class x, and we set the reload flag for X and record the value of Avail def [x]
in def (X).

(3) Operand of Φ in a successor block:8 If will be avail of the Φ is false, nothing
needs to be done. Otherwise if the operand X satisfies insert, we insert a
computation of the current expression at the end of the current block and set
def (X) to refer to the inserted computation. If X does not satisfy insert, we
set def (X) to refer to the current available definition for the redundancy class
of X .

The full algorithm for Finalize 1 is given in Figure 12.
To determine those real occurrences that must be saved to the temporary, Fi-

nalize 2 performs a backward search over the FRG. The search begins at the set

8Recall that Φ operands are considered as occurring at their corresponding predecessor blocks.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

652 · Robert Kennedy et al.

procedure Set save(X)
if (X is a real occurrence)

save(X)← true
else if (X is a Φ occurrence)

for each operand ω of X do
if (not processed(ω))

Set save(def (ω))
if (X is real or inserted)

for each f ∈ F that is a will be avail Φ appearing in DF+(X) do
extraneous(f)← false

end Set save

procedure Set replacement(g, replacing def)
for each will be avail f ∈ F with jth operand defined by g do

if (extraneous(f))
Set replacement(f, replacing def)

else
replace jth operand of f by replacing def

for each real occurrence X satisfying reload with def (X) = g do
def (X)← replacing def
F ← F − {g}

end Set replacement

procedure Finalize 2
for each f ∈ F satisfying will be avail do

extraneous(f)← true
for each real occurrence X do

save(X)← false
for each f ∈ F do

for each operand ω of f do
processed(ω)← false

for each real occurrence X satisfying reload do
Set save(def (X))

for each f ∈ F do
if f satisfies will be avail {

if (extraneous(f))
for each operand ω of f do

if ((def (ω) is a Φ and not extraneous(def (ω))) or
(def (ω) is real) or
(def (ω) is inserted))

Set replacement(f, def (ω))
}
else
F ← F − {f}

end Finalize 2

Fig. 13. Algorithm for the second part of Finalize.

of real occurrences that are marked reload and progresses backward along upward
edges using the def field for each reloaded real occurrence as set by Finalize visit
during Finalize 1. Every real occurrence that defines a Φ operand or real occur-
rence encountered in the search must be computed and saved to the temporary, so
the save flag for each such occurrence is set.

The removal of extraneous Φ’s, or FRG minimization, is not a necessary task as
far as PRE is concerned. However, the extraneous Φ’s take up space in the program
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

Partial Redundancy Elimination in SSA Form · 653

a1 + b1 [1]
1 2

[2] �(1;?)
3

a1 + b1 [2]
4 5

[3] �(2; 2)

a1 + b1 [3]
6

exit

7

a1 + b1 [1]
1

a1 + b1 [4]
2

[2] �(1; 4)
3

a1 + b1 [2]
4 5

a1 + b1 [2]

6

exit

7

(a) before Finalize (b) after Finalize

Fig. 14. Effect of FRG minimization.

representation and may affect the efficiency of other SSA-based optimizations to be
applied after PRE. Removing an extraneous Φ requires changing the occurrences
in its redundancy class to refer to a different class that defines the value of the
Φ. FRG minimization can be implemented as a variant of the φ insertion step
in SSA construction [Cytron et al. 1991; Johnson et al. 1994; Sreedhar and Gao
1995]. We initially mark all the Φ’s as being extraneous. Applying the φ insertion
algorithm, we can find and mark the Φ’s that are not extraneous, based on the
iterated dominance frontier of the set of real occurrences with the save flag set plus
the inserted computations. We then pass over all the extraneous Φ’s to determine
a replacing class for each one. Whenever an extraneous Φ represents redundancy
class x and has an operand using redundancy class y that is not defined by an
extraneous Φ, y is the replacing class for x. From such a Φ we propagate the
replacing class along downward edges: once the replacing class for a Φ is known,
the replacing class for every occurrence defined by that Φ becomes known (the
replacing class for each such occurrence is the same as the replacing class of the
Φ). See Figure 13. It is straightforward to see that this method correctly replaces
all references to extraneous Φ’s by references to nonextraneous occurrences.

The effect of FRG minimization in the Finalize step can be seen in Figure 14,
where the algorithm has discovered that the value of a + b in block 4 should be
reloaded from the expression temporary, so the Φ in block 6 is extraneous. Fig-
ure 14(b) shows the form of the program after FRG minimization removes the
extraneous Φ and updates the real occurrence in block 6 that referred to it.

Figure 15 shows our example program P at the end of the Finalize step. The new
classes 3 and 4 have been introduced, defined by inserted computations in blocks 1
and 3, respectively, and each of the real occurrences from the original program will

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

654 · Robert Kennedy et al.

a1

[3]
1

.

....

...

...

...

....

..................

[1] �(2; 3)

a2 �(a4; a1)
2

.

....

...

...

...

....

..................

.

...

...

...

...

..

...

.

.....

....

....

....

......

............

..................

..................

..................

..................

..................

..................

a2 + b1 [1]

a3

[4]
3

.

....

...

....

...

...

..................

[2] �(1; 4)

a4 �(a2; a3)

a4 + b1 [2]
4

.............

.............

.............

............................
........
.......

....

........
...

.....
.....
.....

....
....
....
...

...

....

...

...

..

..

...

..

...

..

...

..

..

..

..

...

..

..

..

..

..

..

..

..

..

.

..

..

..

.

..

..

..

.

.

..

.

..

..

.

..

..

..

.

.

..

.

..

.

..

.

..

...

..

.

..

.

..

.

..

.

.

..

..

..

..

..

..

..

.

..

..

.

..

..

..

.

..

.

..

..

..

..

..

..

..

.

..

..

..

..

...

..

..

...

..

..

...

..

...

...

...

...

..

...

.

...

....

...

...

..

...

....
....
....

....
.....
......

.....
.........
.

...............
.........................

..............

..............

.

...

...

...

....

...

.

..................

..................

exit
5

...

..................
..
..
..
...
.......
.

...

..................
..
..
..
...
.......
.

.....................
..
..
..
...
........

..

..

..

...

........

....
.................
..
..
...
...
.......

...

..................
..
..
..
...
.......
.

..............
..............
..............
..............
..............
..............
.............
..............
.............
..............
.............
.............
..............
.............
.............
.............
.............
.............
.............
.............
.............
.............
..........

..
..

...
...

...
...

..
..
..
.................
.................
.....................

.....................
.........................

.................................
..

......................................
............................
.............

...
..............................
.......................
...................
.................
...............
...............
.............
.............................
....................

...................................
.......................
...................
.................
...............
...
.................
.....................

...........................

....................

................

..............

.......
.................
.....................

..............
...............
..............
..............
.............
.............
.............
.......
..................
.................... �nal FRG

(upward
edges shown)

Fig. 15. Program P after Finalize.

be reloaded from the temporary.

Lemma 8 (Correctness of Save/Reload). At the point of any reload, the
temporary contains the value of the expression.

Proof. This lemma follows directly from the Finalize algorithm and from the
fact that Rename assigns redundancy classes to occurrences while traversing the
FRG in dominator-tree preorder. In particular, Finalize ensures directly that each
reload is dominated by its available definition. Because the live ranges of differ-
ent redundancy classes do not overlap, each reloaded occurrence must refer to its
available definition.

Lemma 9 (Optimality of Reload). The optimized program does not com-
pute the expression at any point where it is fully available.

Proof. It is straightforward to check that the optimized program reloads the
expression value for any occurrence defined by a Φ satisfying will be avail, and it
reloads the expression value for any occurrence dominated by another real occur-
rence in the same class. Therefore, we need only note that will be avail accurately
reflects availability in the optimized program (by Lemma 7) and that by the def-
inition of insert we only insert for Φ operands where the insertion is required to
achieve availability.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

Partial Redundancy Elimination in SSA Form · 655

a1

t1 a1 + b1
1

a2 �(a4; a1)

t2 �(t4; t1)
2

t2

a3

t3 a3 + b1
3

a4 �(a2; a3)

t4 �(t2; t3)

t4
4

exit
5

Fig. 16. Program P after CodeMotion.

3.6 The CodeMotion Step

Once the factored redundancy graph has been processed by Finalize, the only re-
maining task is to update the SSA program representation to reflect the results
of PRE. This involves introducing the expression temporary t for the purpose of
eliminating redundant computations.

The CodeMotion step walks over the FRG in dominator-tree preorder. At a real
occurrence, if save is true, it generates a save of the result of the computation into
a new version of t. For Φ operand occurrences and real occurrences with the reload
flag set, it replaces the computation by a use of t whose SSA version is determined by
the version already assigned to the present occurrence’s representative occurrence.
At an inserted occurrence, it saves the value of the inserted computation into a new
version of t. At each Φ, it generates a corresponding φ for t. Figure 16 shows our
running example program at the end of the CodeMotion step.

4. THEORETICAL RESULTS

In this section we derive our main results about SSAPRE from the lemmas already
given.

Theorem 1. SSAPRE chooses a safe placement of computations, i.e., along
any path from entry to exit exactly the same values are computed in the optimized
program as in the original program.

Proof. Since insertions take place only at points satisfying down safe, this the-
orem follows directly from Lemma 4.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

656 · Robert Kennedy et al.

Theorem 2. SSAPRE generates a reload of the correct expression value from
the temporary at a real occurrence point if and only if the expression value is avail-
able at that point in the optimized program.

Proof. This theorem follows from the fact that a reload is generated for a real
occurence if and only if it is dominated by a will be avail Φ of the same class (in
which case we appeal to Lemma 7 for the availability of the expression at the reload
point), or by a real occurrence of the same class that is marked save by Finalize.

Theorem 3. SSAPRE generates a save to temporary at a real occurrence or
insertion point if and only if the following hold:

—the expression value is unavailable (in the optimized program) just before that
point and

—the expression value is partially anticipated just after that point (i.e., there will
be a use of the saved value).

Proof. This theorem follows directly from Lemma 9 and from the fact that the
Finalize algorithm sets the save flag for a real occurrence only when there is a
control flow path from that occurrence to an occurrence where the reload flag is
set, with no intervening save.

Theorem 4. SSAPRE chooses a computationally optimal placement, i.e., no
safe placement can result in fewer evaluations of the expression along any path
from entry to exit in the control flow graph.

Proof. We need only show that any redundancy remaining in the optimized
program cannot be eliminated by any safe placement of computations. Suppose
P is a control flow path in the optimized program leading from one computation,
ψ1, of the expression to another computation, ψ2, of the same expression with no
assignment to any operand of the expression along P . By Theorem 2, the expression
value cannot be available just before ψ2, so ψ2 is not dominated by a real occurrence
of the same class (by Lemma 9); nor is it defined by a will be avail Φ (by Lemma 7).
Because there is no assignment to any expression operand along P , the definition of
ψ2’s class must lie on P , and since it cannot be a real occurrence nor a will be avail
Φ, it must be a Φ that is not will be avail. Such a Φ cannot satisfy later because
one of its operands is reached by ψ1, so it must not be down-safe. So no safe set of
insertions could make ψ2 available while eliminating a computation from P .

Theorem 5. SSAPRE chooses a lifetime-optimal placement; specifically, if p is
the point just after an insertion made by SSAPRE and C denotes any computation-
ally optimal placement, C makes the expression fully available at p.

Proof. This theorem is a direct consequence of Lemma 6 and Theorem 4.

Theorem 6. SSAPRE produces minimal SSA form for the generated temporary.

Proof. This minimality result follows directly from the correctness and mini-
mality of the dominance frontier φ-insertion algorithm [Cytron et al. 1991]. Each
Φ remaining after Finalize is justified by being on the iterated dominance frontier
of some real or inserted occurrence that will be saved to the temporary.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

Partial Redundancy Elimination in SSA Form · 657

5. PRACTICAL IMPLEMENTATION

In this section, we discuss some issues related to the efficient and practical im-
plementation of SSAPRE in an optimizing compiler. An implementation can take
advantage of the sparse approach in dramatically reducing the maximum storage
needed to optimize all the expressions in the program. This can be accomplished
by maintaining a worklist that contains the different lexically identified expressions
that await processing by SSAPRE. In the absence of redundancy, we can exploit
the nesting relationship in expression trees to avoid unnecessary work in the an-
cestral part of the tree. We also present more efficient forms of the algorithms for
Φ-Insertion, Rename, and the computation of save in the Finalize step than the
versions we presented in Section 3.

5.1 Worklist-Driven PRE

The algorithms we presented in Section 3 for Φ-Insertion and Rename work on all
expressions in the program simultaneously while passing through the entire pro-
gram. Handling all expressions at once creates overhead in memory usage because
the Φ’s for all the expressions in the program need to be represented together,
and the renaming stacks for all the expressions have to coexist in the Rename
step. Some details of the issue of representing the FRG for an expression were not
made explicit in Section 3. We now present a worklist-driven PRE approach that
addresses these issues.

In the worklist-driven approach, we manage the lexically identified expressions
that need to be worked on by PRE using a worklist. We add an initial pass,
Collect-Occurrences, that scans the program to create the initial worklist. For each
lexically identified expression, we represent its occurrences in the program by a set
of occurrence nodes. Each occurrence node provides enough information to pinpoint
the location of that occurrence in the program. Collect-Occurrences is the only pass
that needs to look at the entire program. The six steps of SSAPRE operate on each
lexically identified expression based only on its occurrence nodes. By applying
the six steps of SSAPRE to each lexically identified expression individually, we
can decouple PRE for each expression from the treatment of other expressions.
Intermediate storage allocated for use in optimizing an expression can be recycled
for use in optimizing the next expression. The total memory working set size needed
to perform PRE on all the expressions in the program is thus substantially reduced.
This scheme also allows parallel invocation of PRE for different lexically identified
expressions where parallel processing facilities are available.

The occurrence nodes created by Collect-Occurrences are called real occurrence
nodes, because they correspond to occurrences of the expression in the input pro-
gram. There are other kinds of occurrence nodes represented during the six steps
of SSAPRE. Based on the real occurrence nodes, Φ-Insertion creates Φ occur-
rence nodes to represent the Φ’s that it inserts. From the Φ occurrence nodes, it
also creates Φ-predecessor occurrence nodes, one at the end of each block that is
a predecessor of some block containing a Φ. Φ-predecessor occurrences serve as
place holders for Φ operands, as the operands are regarded as occurring at the
predecessors of the block containing the Φ.

To represent the factored redundancy graph, each occurrence node has a class

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

658 · Robert Kennedy et al.

field for storing the redundancy class number assigned to it. For a Φ-predecessor
node or a real occurrence node that represents a use (i.e., one that is not the repre-
sentative for its class), the def field points to the representative occurrence for the
redundancy class; these fields represent upward edges in the factored redundancy
graph. For Φ occurrence nodes, the Φ operands and result are provided.

Separately, there are exit occurrence nodes for indicating when we reach a point of
program exit. They are used only in the Rename step for initializing the down safe
flag.

In the remaining steps of SSAPRE, we need to visit the occurrence nodes in
an order corresponding to a preorder traversal of the dominator tree (DT) of the
control flow graph, so we maintain the sequence of occurrence nodes in this sorted
order. We precompute the depth-first number (dfn) and the number of descendents
(des) for each node in the DT. For any two basic blocks x and y, we can determine
whether x dominates y using the formula

Dominate(x, y) ≡ dfn(x) ≤ dfn(y) ≤ dfn(x) + des(x).

When we walk through the sequence of basic blocks in dominator-tree preorder,
Dominate(x, y) = true indicates that we are descending the DT. Dominate(x, y) =
false alerts us to the need to take appropriate action due to the fact that we are
backtracking up the DT; in the case of Rename, it is necessary to pop the renaming
stack until the version at the top of the stack is defined at a block that dominates y.
These observations allow us to walk the occurrence list in dominator-tree preorder
without a recursive descent of the dominator tree.

5.2 Nested Expressions

Optimizing one expression at a time allows us to exploit the absence of redundancy
in nested expression trees in speeding up SSAPRE. We use the following definition
to explain what we mean:

Definition 6. A compound expression is an expression that consists of an oper-
ator that operates on the results of additional operators within the expression.

For example, the expression (a + b) − c is compound because it consists of the
− operator that operates on the result of a + b. In contrast, a + b is a non-
compound, or simple, expression. PRE needs to be applied to all the operations
in a compound expression, because each of them may exhibit redundancy. Prior
approaches to PRE based on bit vectors typically assign a separate bit-vector slot
to each operation in a compound expression and then apply PRE to all expressions
encoded in the bit vectors simultaneously. However, we can take advantage of an
important observation regarding redundancies in compound expressions:

Observation 2. If redundancy exists in a compound expression, the same redun-
dancy exists in all the operators within the expression. Conversely, if a simple
expression does not exhibit any redundancy, no compound expression that contains
the simple expression exhibits redundancy.

For example, if redundancy exists for (a+ b)− c, the same redundancy must exist
for a+b. If a+b does not exhibit redundancy, then (a+b)−c also must not exhibit
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

Partial Redundancy Elimination in SSA Form · 659

input HSSA program

?

Collect-Occurrences
?

initial worklist
?

next

expr?

?

yes

?

no

�-Insertion
Rename
?

initial SSA graph
?

DownSafety

WillBeAvail

Finalize
?

�nal SSA graph
?

CodeMotion
(update HSSA;
add new exprs
to worklist.)

-

output HSSA program

Fig. 17. SSAPRE implementation flow chart.

redundancy. If a+b has redundancy, however, no inference can be drawn regarding
redundancy for the − operation in (a+ b)− c.

As a consequence of Theorems 2 and 3, elimination of redundancy always results
in converting the expression to the use of a temporary, so the above observation
leads to a strategy for dealing with the optimization of compound expressions. The
strategy is to defer PRE for compound expressions until they become converted to
simple expressions by redundancy elimination for their constituent expressions. In
our worklist-driven approach, this implies that only simple expressions are allowed
in the worklist. As their optimizations proceed, some simple expressions will be
converted to temporaries, which in turn causes some compound expressions to
become simple expressions. As new simple expressions are formed, they are entered
into the worklist.

As an example, for (a+ b)− c, a+ b is a simple expression and is entered into the
worklist by Collect-Occurrences. After SSAPRE has worked on a+b, any redundant
occurrence of a + b will be replaced by a temporary t. If PRE on a + b converts
(a + b) − c to t − c, this new simple expression, formed in the CodeMotion step,
will be entered as a new member of the worklist. Redundancies of t− c, and hence
redundancies in (a+ b)− c, will be eliminated later when SSAPRE processes t− c.
If the expression (a+ b)− c does not yield t− c when a+ b is processed, (a+ b)− c
will remain a compound expression and will never be processed by SSAPRE.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

660 · Robert Kennedy et al.

In the absence of redundancy, SSAPRE terminates quickly because it can skip
the processing of all compound expressions. In the presence of redundancies, the
approach has the secondary effect of converting the evaluation of compound ex-
pressions essentially to triplet form, because the result of each simple expression is
saved to a temporary, which is then used as an operand in the evaluation of another
simple expression. If this effect is undesirable, the compound expressions can be re-
constructed by performing copy propagation on the temporaries that have only one
locally occurring use. After copy propagation, the temporaries can be eliminated
by dead-store elimination. But in the usual case the program will eventually be
translated to machine instructions, so the triplet form poses no obstacle for most
target architectures.

The above strategy deals cleanly with the interaction between the optimizations
of nested expressions, while speeding up optimization by skipping compound expres-
sions that exhibit no redundancy. This strategy is hard to implement in bit-vector
PRE, which typically works on all expressions in the program simultaneously so
as to take advantage of the parallelism possible with bit-vector operations. And
because SSAPRE only has to deal with simple expressions, its implementation can
be simplified. Figure 17 shows the flow chart of an implementation of SSAPRE
based on worklists that incorporates the above strategy of dealing with compound
expressions.

5.3 Demand-Driven Φ Insertion

The Φ-Insertion algorithm given in Section 3.1 is not sparse because it can insert
many Φ’s due to variable assignments that do not alter any occurrence of the cor-
responding expression. In particular, we only need to insert a Φ at a merge point
when it reaches a later occurrence of the expression (i.e., when the expression is par-
tially anticipated at the merge point), because otherwise the Φ will not contribute
to any optimization in PRE and need not correspond to a φ in the final SSA form
for the expression’s real temporary. In this section, we present a technique that
substantially reduces the number of unnecessary Φ’s inserted. The resulting algo-
rithm is sparse in the sense that all the Φ’s inserted are justified either by appearing
on the iterated dominance frontier of some real occurrence of the expression or by
appearing at a point where the expression is partially anticipated.

Recall from Section 3.1 that Φ’s are placed on the iterated dominance frontiers of
real occurrences of the expression and of assignments to operands of the expression,
because these points necessarily contain the combined iterated dominance frontiers
of the set of assignments to the real expression temporary. In our sparse Φ insertion
algorithm, both types of Φ insertions are performed together in one pass over the
program, with the second type of Φ insertion performed in a demand-driven way.
We use the set DF phis[i] to keep track of the Φ’s inserted on the iterated dominance
frontiers of the occurrences of expression E(i). We use the set Var phis[i][j] to
keep track of the Φ’s inserted due to the occurrence of φ’s for the jth variable in
expression E(i). When we come across an occurrence of expression E(i), we update
DF phis[i]. For each variable vj in the occurrence, we check if it is defined by a
φ. If it is, we update Var phis[i][j], because a Φ at the block that contains the
φ for vj may participate in optimization of the current occurrence of E(i). The
same may apply to earlier points in the program as well, so it is necessary to check
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

Partial Redundancy Elimination in SSA Form · 661

procedure Set var phis(phi, i, j)
if (phi 6∈ Var phis[i][j]) {

Var phis[i][j]← Var phis[i][j] ∪ {block containing phi}
for each operand V of phi do

if (V is defined by φ)
Set var phis(Phi(V), i, j)

}
end Set var phis

procedure Φ-Insertion

for each expression E(i) do {
DF phis[i]← {}
for each variable j in E(i) do

Var phis[i][j]← {}
}
for each occurrence X of E(i) in program do {

DF phis[i]← DF phis[i] ∪DF+(X)

for each variable j in E(i) do {
let V be the SSA variable in the jth position in X
if (V is defined by φ)

Set var phis(Phi(V), i, j)
}
}
for each expression E(i) do {

for each variable j in E(i) do
DF phis[i]← DF phis[i] ∪ Var phis[i][j]

insert Φ’s for E(i) according to DF phis[i]
}

end Φ-Insertion

Fig. 18. Algorithm for demand-driven Φ insertion.

recursively for updates to Var phis[i][j] for each operand in the φ for vj . After all
occurrences in the program have been processed, the places to insert Φ’s for E(i)

are given by the union of DF phis[i] with the Var phis[i][j]’s. The full algorithm
for the Φ-Insertion step is given in Figure 18. Using this demand-driven technique,
we take advantage of the SSA representation of the input program.

The following lemma replaces Lemma 1 in the demand-driven context.

Lemma 10 (Sufficiency of Φ-Insertion). If B is a basic block where no Φ is
inserted and the expression is partially anticipated at the entry to B, exactly one
evaluation of the expression can reach the entry to B.

Proof. Suppose two different evaluations of the expression, ψ1 and ψ2, reach
the entry to B. It cannot be the case that ψ1 and ψ2 both dominate B; suppose
without loss of generality that ψ1 does not dominate B. Now there exists a block
B0 that dominates B, is reached by ψ1 and ψ2, and lies in DF+(ψ1) (n.b., B0 may
be B). If ψ1 is a real occurrence or a Φ, the Φ-Insertion step must have placed a Φ
in B0, contradicting the proposition that ψ1 reaches B. If on the other hand ψ1 is
an assignment to an operand ν of the expression (so ⊥ is among the values reaching
B), there must be a φ for ν in B0 by the correctness of the input SSA form. Hence,
when Φ-Insertion processed the expression occurrence responsible for the partial
anticipation at B, it must have placed a Φ in B0, once again contradicting the

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

662 · Robert Kennedy et al.

Table I. Assigning Class Numbers in Rename.

defining top-of- current condition for assigning applying
stack occurrence X occurrence Y class number of X to Y phase

case 1 real real all corresponding variables Rename1
case 2 real Φ operand have same SSA versions Rename2

case 3 Φ real definitions of all Rename1
case 4 Φ Φ operand variables in Y dominate X Rename2

proposition that ψ1 reaches B.

5.4 Delayed Renaming

The Rename algorithm described in Section 3.2 maintains version stacks for all
the variables in the program in addition to the redundancy class stacks for the
expressions. Apart from taking up additional storage, updating the variable version
stacks requires keeping track of changes to the values of the expressions’ variables.
Since many versions of variables may not appear in any PRE candidate expression,
the algorithm is not sparse. One goal of the worklist-driven approach is to be
able to perform the six steps of SSAPRE based solely on the occurrence nodes, so
we desire a Rename algorithm that can perform its job without passing over the
entire program. We now describe the delayed renaming technique, which is a more
efficient version of the Rename step of SSAPRE.

We begin by discussing in greater detail how redundancy class numbers are as-
signed by the method given in Section 3.2. The Rename step maintains the re-
dundancy class stack so that, at any time, the top of the stack gives the last class
number, with the corresponding defining occurrence node, assigned to the expres-
sion in the preorder traversal of the DT. Every Φ defines a new class, so the
question of whether to assign new class numbers applies only to real occurrences
and Φ operands. This, plus the fact that the defining occurrence on the top of the
stack must correspond to either a real occurrence or a Φ, leads to only four different
situations that can arise; these situations are shown in Table I. A real occurrence
of the expression or a Φ operand is given the class number of the top of the ex-
pression renaming stack if the versions of all the variables in that occurrence match
the current versions given by the renaming stacks for the variables. This decision
on the question of whether to assign a new class number is the sole purpose of the
variable stacks in the Rename algorithm of Section 3.2.

If the defining occurrence at the top of the expression-renaming stack is a Φ, the
versions of the variables at the Φ are not provided by the Φ occurrence node. This
situation corresponds to cases 3 and 4 in Table I. In these cases, Rename uses a
different method for determining whether the current version of a variable matches
the version of the same variable in that last Φ occurrence of the expression. Let A
be the beginning of the basic block containing the Φ, and let B be the location of
the current occurrence of the expression. Suppose we are considering variable x in
the expression. Let C be the assignment that defines the current version of x. By
the definition of SSA, C dominates B. Using � to denote the dominance relation,
we have C � B. Because of our maintenance of the expression-renaming stack in
the preorder traversal of the DT, we have A� B. Thus, given C � B and A� B,
either A � C or C � A. A � C implies the version of x at A is different from
the version at B. C � A implies the version of x at A is the same as the version
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

Partial Redundancy Elimination in SSA Form · 663

procedure Assign new class(occ)
class(occ)←count
Push(occ, stack)
count ← count + 1

end Assign new class

procedure Rename1
count ← 0
stack ← empty
set for rename2 ← {}
for each occurrence Y of the current expression in preorder DT traversal order do {

while (Top(stack) does not dominate Y) do
Pop(stack)

if (Y is a Φ occurrence)
Assign new class(Y)

else if (Y is a real occurrence)
if (stack is empty)

Assign new class(Y)
else {
X ← Top(stack)
if (X is a real occurrence)

if (all corresponding variables in Y and X have same SSA version)

class(Y)← class(X)
def (Y)← X

else Assign new class(Y)
else /∗ X is a Φ occurrence ∗/

if (definitions of all variables in Y dominate X) {
class(Y)← class(X)
def (Y)← X
set for rename2 ← set for rename2 ∪ {Y }

}
else Assign new class(Y)

}
else if (Y is a Φ operand occurrence)

if (stack is empty)
def (Y)← ⊥

else {
X ← Top(stack)
class(Y)← class(X)
def (Y)← X

}
}

end Rename1

Fig. 19. Algorithm for Rename1.

at B. Thus, C � A is a necessary and sufficient condition for the version of x to
be the same at both A and B. This is the condition we use for cases 3 and 4 in
Table I. (If A and C are respectively a Φ and a φ in the same basic block, we say
C dominates A).

The variable stacks are unnecessary for cases 1 and 3 because the variable versions
are given explicitly by the expressions themselves, and we do not have to rely on
the variable stacks to find the current versions of the variables in the expression.
However, for cases 2 and 4, we have difficulty in renaming the Φ operand, because

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

664 · Robert Kennedy et al.

function φ opnd from res(Z, j)
b← block containing Φ that defines Z
Q← copy of Z
for each variable v in Z do {

if (v is defined by φ in b)
replace v in Q by jth operand of v’s φ

}
return Q

end φ opnd from res

procedure Rename2
for each f ∈ F do

for each operand ω of f do
processed(ω)← false

while (set for rename2 is not empty) do {
remove real occurrence Z from set for rename2
f ← Φ that defines Z
for each operand ω of f do {

if (not processed(ω)) {
j ← index of ω in f
Y ← φ opnd from res(Z, j)
X ← def (ω) (as assigned by Rename1)

if (X is a real occurrence)
if (all corresponding variables in Y and X have same SSA version)
/∗ no change needed ∗/

else
def (ω)← ⊥

else /∗ X is a Φ occurrence ∗/
if (definitions of all variables in Y dominate X)
/∗ no change needed ∗/
set for rename2 ← set for rename2 ∪ {Y }

else
def (ω)← ⊥

processed(ω)← true
}

}
}

end Rename2

Fig. 20. Algorithm for Rename2.

no real occurrence of the expression is available to provide the the current versions
of the variables. We solve this problem using the delayed renaming strategy, in
which we split the Rename step into two separate passes. The first pass, Rename1,
is Rename minus the use and maintenance of variable stacks. When renaming
a Φ operand (cases 2 and 4), instead of applying the method shown in Table I,
Rename1 optimistically assumes its version to be the version given by the top of
the expression’s version stack. Note that either this assumption is correct or the
operand should be ⊥. No other class number can be right. Rename1 performs all its
work based solely on the occurrence nodes of the expression and the expression’s
version stack that it maintains while visiting the occurrence nodes. Whenever
Rename1 encounters a real occurrence of the expression that is defined by Φ, it
adds the real occurrence to a set that it builds for the second pass to use. The
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

Partial Redundancy Elimination in SSA Form · 665

a1 + b1 [1]
1

[2] �(1;?)
2

a2

3

a3 �(a1; a2)

[3] �(2; 2)

a3 + b1 [3]
4

a1 + b1 [1]
1

[2] �(1;?)
2

a2

3

a3 �(a1; a2)

[3] �(2;?)

a3 + b1 [3]
4

(a) after Rename1 (b) after Rename2

Fig. 21. Operation of delayed renaming.

algorithm for Rename1 is given in Figure 19.
The graph built by Rename1 is optimistic in the sense that it presumes more

redundancy than may actually be present. The final renaming of Φ operands is
delayed to the second pass, Rename2 , which is given in Figure 20. Rename2 works
according to the set built for it by Rename1 that contains all the real occurrences
defined by Φ’s. Each such real occurrence provides the current versions of the
variables at the Φ. From the version of each variable at the Φ, Rename2 determines
the version of the variable at each predecessor block based on the presence or
absence of φ for the variable at that merge block (function φ opnd from res). Then
the algorithm applies the methods for cases 2 and 4 of Table I, except that the most
recent defining occurrence is retrieved through an upward edge of the FRG rather
than from the top of the expression-renaming stack. If the Φ operand assigned by
Rename1 is not correct, Rename2 resets it to ⊥. If the Φ operand is correct and is
defined by another Φ, Rename2 manufactures a real occurrence node containing the
versions of the variables at the Φ operand and adds the manufactured occurrence
to the set to recursively ensure verification of the variable versions for operands of
the defining Φ.

In the example of Figure 21, Rename1 sets both operands of the Φ in block 4
to refer to class 2 because the Φ representing class 2 in block 2 appears at the top
of the expression- renaming stack when those operands are encountered. Rename1
also places block 4’s real occurrence into the set of occurrences for processing by
Rename2 because class 3 is represented by a Φ. When Rename2 processes that
real occurrence, the algorithm discovers that class 2 is correct as the first operand
of the Φ representing class 3. This determination is made as follows. The current
versions of the expression’s variables at the end of block 2 where the Φ operand
occurs are found to be a1 (because it is the first operand of the φ for a in block 4)

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

666 · Robert Kennedy et al.

and b1 (because it is the version that appears in the real occurrence, and there is
no φ for b in block 4). The algorithm concludes that class 2 is correct as the first
Φ operand because the definitions of a1 and b1 both dominate the representative
occurrence of class 2. Upon concluding this operand is correct, the algorithm builds
the expression a1 + b1 viewed as occurring at the end of block 2, and enters this
occurrence in the set of occurrences to be processed. For the second Φ operand in
block 4, the algorithm discovers that the definition of a2 (the current version at
the end of block 3) does not dominate the Φ that represents class 2. Therefore the
second operand of block 4’s Φ is reset to ⊥.

Delayed renaming relies on seeing a later real occurrence of the expression to
determine the versions of the variables at the Φ and thus the Φ operands. A later
real occurrence will be seen only if the expression is partially anticipated at the Φ.
It is sometimes more efficient to eliminate dead Φ’s early in the process of building
the FRG (see Section 5.5). Any Φ where the expression is not partially anticipated
is guaranteed to be dead in the final SSA form for the expression temporary, so the
delayed renaming algorithm incorporates the additional function of determining Φ’s
that are not live. Without delayed renaming, this task would require a dead-store
elimination pass.

5.5 Efficient save Computation in Finalize

Recall from Section 3.5 that in order to compute the save predicate for each real
occurrence, the Finalize algorithm searches along upward edges in the FRG from
real occurrences satisfying reload and sets save for each real occurrence it encounters
that is an available definition. There are two ways an implementor might reduce
the cost of this save computation.

The first technique is based on the observation that any real occurrence that is
the available definition for a real occurrence or for an operand of a Φ satisfying
will be avail ∧ down safe must be saved to the temporary. Such real occurrences
can be recognized during the processing of Φ operands in the first part of Finalize,
and their save predicates can be set at that time. The remaining save predicates
must then be established through the graph search in the second part of Finalize,
but this search can be restricted to those Φ’s that satisfy will be avail∧¬down safe.
If demand-driven Φ insertion and delayed renaming have been used, the number of
such Φ’s is likely to be quite small, so the benefit of this approach for compilation
time may be noticeable.

The second technique that can be used in practice to set the save predicate relies
on the observation that with most target architectures, generating intermediate
code that saves an expression result to a temporary will cost nothing because ex-
pression results must be computed in registers at the level of machine code anyway.
Consequently, an implementor might feel it worthwhile to dispense entirely with the
graph search to determine the save predicate, and replace it with a simple heuristic
that sets save for every real occurrence that is the available definition for another
real occurrence or for an operand of a Φ that satisfies will be avail. This heuristic
clearly sets save for every occurrence that must be saved, and may set save for some
others. The main disadvantage of the heuristic is that setting save unnecessarily
can make the final SSA form for the expression temporary nonminimal.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

Partial Redundancy Elimination in SSA Form · 667

6. ANALYSIS

While the formulation of the optimal code motion algorithm in SSAPRE is self-
contained, we can gain additional insight by comparing SSAPRE with a slotwise
implementation of lazy code motion. We can regard the Φ-Insertion and Rename
steps to construct the factored redundancy graph as corresponding to the initial-
ization of data flow information; these two steps are faster in SSAPRE because
we take full advantage of the SSA form of the input program. While down-safety
corresponds to the same attribute in lazy code motion, the correlation in the part
that involves forward propagation of data flow information is less direct. Since we
have shown that our algorithm yields the same results as lazy code motion, it is
quite plausible that the forward propagation parts in SSAPRE and a slotwise im-
plementation of lazy code motion can be proven essentially equivalent. But because
slotwise analysis propagates with respect to the control flow graph and SSAPRE
propagates with respect to the sparse SSA graph, the propagation in SSAPRE will
take fewer steps. This effect is heightened by the tendency of the DownSafety,
CanBeAvail, Later, Set save, and Set replacement searches to limit the sections of
the graph that must be considered by subsequent steps. The factored redundancy
graph also allows SSAPRE to maintain the generated temporary easily in SSA
form.

The complexities of the various steps in SSAPRE can be easily established. As-
suming the implementation described in Section 5, the Rename, DownSafety, Will-
BeAvail, Finalize, and CodeMotion steps are all linear with respect to the sum of
the number of nodes (v) and edges (e) in the FRG. The Φ-Insertion step is Ω(v2)
for insertion at domination frontiers, but as we explained in Section 3.1, there are
linear-time SSA φ-placement algorithms that can be used to lower it to O(e). The
second kind of Φ insertion due to variable φ’s is also linear using our demand-driven
algorithm. Thus, for a program of size n, SSAPRE’s total time is O(n(E + V)),
where E and V are the number of edges and nodes in the control flow graph respec-
tively. This is pleasing given that SSAPRE replaces both the solution of data flow
equations and the initialization of the local data flow attributes in bit-vector-based
PRE.

7. MEASUREMENTS

In this section, we repeat the compile-time performance measurements for the
SPECint95 and SPECfp95 benchmark suites from Chow et al. [1997] and the re-
lated discussion contrasting the compilation efficiencies between a bit-vector-based
implementation of PRE and an implementation of SSAPRE. Then we offer another
perspective on the compilation efficiency of SSAPRE by presenting statistical data
that characterize the partial redundancy problems in the same two benchmark
suites. Our statistics are generated using the optimizer WOPT, a component of
the Silicon Graphics MIPSpro Compiler Suite. WOPT is an intraprocedural global
optimizer that uses SSA as its internal program representation for performing all
its optimizations [Liu et al. 1996; Chow et al. 1996; Kennedy et al. 1998; Lo et al.
1998]. The SSAPRE phase in WOPT incorporates the practical implementation
techniques described in Section 5.

For our measurements the benchmarks were compiled at the optimization level
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

668 · Robert Kennedy et al.

Table II. Time (in msec.) Spent in PRE in Com-
piling SPECint95

Benchmark Bit-vector
PRE (T1)

SSAPRE
(T2)

Ratio
T2/T1

go 116900 151260 1.293

m88ksim 4850 4440 0.915

gcc 886360 339160 0.382

compress 100 60 0.600

li 12950 5090 0.393

ijpeg 10340 11200 1.083

perl 98840 34970 0.353

vortex 62950 53000 0.841

Table III. Time (in msec.) Spent in PRE in Com-
piling SPECfp95

Benchmark Bit-vector
PRE (T1)

SSAPRE
(T2)

Ratio
T2/T1

tomcatv 40 60 1.500

swim 170 400 2.352

su2cor 500 700 1.399

hydro2d 7080 8780 1.240

mgrid 500 1400 2.799

applu 5060 9450 1.867

turb3d 2420 5000 2.066

apsi 37930 93960 2.477

fpppp 1450 1980 1.365

wave5 94150 85800 0.911

-O2, in which only intraprocedural analyses and optimizations are performed. Our
implementation of SSAPRE incorporates the additional functionalities of strength
reduction and linear function test replacement, as described in Kennedy et al.
[1998]. We have suppressed these extra optimizations in collecting the statistics so
that the results only reflect the effects of partial redundancy elimination.

In the remainder of this section, we present and discuss four sets of statistical
data. In Section 7.1, we compare the time spent in performing PRE between a bit-
vector-based implementation and our implementation of SSAPRE. In Section 7.2,
we measure the fraction of expressions that require full processing by SSAPRE. In
Section 7.3, we estimate the degree of sparseness that can be achieved in SSAPRE
by measuring the size of the FRG divided by the size of the control flow graph. In
Section 7.4, we provide statistics on the PRE problems in the benchmarks and the
results of applying PRE to them.

7.1 Optimization Time Measurements

The WOPT optimizer uses a variant of SSA called HSSA as its internal program
representation [Chow et al. 1996]. Prior to our SSAPRE implementation in the
MIPSpro version 7.2 compilers, the optimizer had used the bit-vector-based Morel
and Renvoise algorithm [Chow 1983] to perform PRE, while it used known SSA-
based algorithms for its other optimizations. In this section, we compare the perfor-
mance of SSAPRE and the bit-vector-based implementation using the SPECint95
and SPECfp95 benchmark suites.
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

Partial Redundancy Elimination in SSA Form · 669

Measured by the running time of the optimized benchmark code, the differences
between the two implementations of PRE are not noticeable. We are more inter-
ested in comparing the optimization efficiencies between the sparse approach and
the bit-vector approach. Both implementations of PRE begin with an SSA repre-
sentation of the program. The bit-vector-based PRE starts by determining the local
attributes and setting up the bit vectors for data flow analyses. Our bit vectors
are represented as arrays of 64-bit words, and their operations are very efficient.
The bit-vector-based PRE does not update the SSA representation of the program;
instead it encodes the effects of PRE in bit-vector form until it is ready to emit the
output program in a non-SSA representation. Our timing for the bit-vector-based
PRE includes only the local attributes phase and the solution time of the PRE data
flow equations. Correspondingly, we omit the CodeMotion step from the SSAPRE
timing and include only the Collect-Occurrences pass and the first five SSAPRE
steps. Tables II and III give our timing results as measured on a 195MHz R10000
Silicon Graphics Power Challenge.

The measurements in Tables II and III show widely different results across the
various benchmarks. In the SPECint95 benchmarks, SSAPRE uses from 65% less
time than the bit-vector approach in perl to 29% more in go. In the SPECfp95
benchmarks, SSAPRE is usually slower, sometimes by up to 2.8 times, as in the
case of mgrid. Without examining the sizes and characteristics of each benchmark’s
procedures in detail, we cannot characterize from these measurement results the
situations in which our SSAPRE implementation is superior to our bit-vector im-
plementation. Even so, we see that the efficiency of sparse implementation stands
out mainly in large procedures. In small procedures, a sparse graph cannot be much
simpler than the control flow graph, so it is much harder to beat the performance
of bit vectors that process 64 expressions at a time. The advantage of sparse im-
plementations increases with procedure size. In large procedures, many expressions
do not appear throughout the procedure, and their sparse representations are much
smaller compared to the control flow graph.

Despite the strong bias toward bit-vector-based PRE being faster in our set of
measurements, we think SSAPRE is very promising. The time complexity of col-
lecting local attributes is Ω(n3). A number of techniques contribute to speeding
up bit-vector data flow analysis, but there is little promise of overcoming the cu-
bic complexity of local attribute collection in the bit-vector approach. As data
flow analyses have sped up, the time spent collecting local attributes has come to
dominate: our bit-vector-based PRE spends 51% of its time in its local attributes
collection phase while optimizing our benchmarks. Because of the cubic complex-
ity, optimization efficiency is more of an issue in large procedures. With the trend
toward more inlining during compilation, large procedures will be more common-
place, and the efficiency advantages of sparse implementation will become more
obvious.

7.2 Expression Candidates

In Section 5.2, we show an implementation scheme in which SSAPRE avoids work-
ing on a compound expression until PRE has converted it to a simple expression.
The scheme is based on the observation that if a simple expression exhibits no re-
dundancy, any compound expression that contains it also exhibits no redundancy.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

670 · Robert Kennedy et al.

Table IV. Lexically Identified Expressions in SPECint95

A B C D
benchmark program total simple C/B exprs not D/B

units exprs exprs bypassed

go 372 20094 9398 47% 8296 41%

m88ksim 252 6501 3534 54% 2722 42%

gcc 1997 65607 30083 46% 25334 39%

compress 24 382 245 64% 199 52%

li 357 1878 994 53% 666 35%

ijpeg 466 11541 6526 57% 5251 45%

perl 273 8881 4357 49% 3621 41%

vortex 923 14284 7414 52% 6683 47%

average 53% 43%

Table V. Lexically Identified Expressions in SPECfp95

A B C D
benchmark program total simple C/B exprs not D/B

units exprs exprs bypassed

tomcatv 1 177 103 58% 98 55%

swim 6 559 337 60% 305 55%

su2cor 26 2336 1418 61% 1328 57%

hydro2d 42 1904 1093 57% 976 51%

mgrid 12 808 502 62% 482 60%

applu 16 3911 2024 52% 1972 50%

turb3d 23 2342 1317 56% 1123 48%

apsi 96 7109 4617 65% 4249 60%

fpppp 38 5673 3326 59% 2251 40%

wave5 93 7444 4685 63% 4370 59%

average 59% 53%

The scheme also relies on the fact that if a compound expression has redundancy,
its component expressions will eventually be converted to temporaries, causing the
expression to become a simple expression.

In Tables IV and V, column A gives the number of program units in each bench-
mark. For each benchmark, we count the number of lexically identified expressions
in each program unit, and sum them across all the program units in the benchmark.
The total, which represents the number of PRE problems in each benchmark, is
shown in column B. Column C shows the number of expressions which are simple
expressions or become converted to simple expressions at the end of SSAPRE; it
represents the number of lexically identified expressions that SSAPRE has to work
on. Column C/B shows that, under our scheme for exploiting the absence of re-
dundancy in nested expression trees, SSAPRE only has to process between 46% to
65% of the PRE candidates that traditional PRE schemes have to handle.

Another way to take advantage of the per-expression processing mode in speeding
up PRE is to detect when the problem has a trivial answer. We find that many PRE
candidates only occur once in the entire program unit; if that occurrence does not
result in the insertion of any Φ, we can conclude that there is no PRE opportunity
for that expression. Thus, at the end of the Φ-Insertion step, we check if there
is any Φ inserted; if none is inserted, and the expression only occurs once in the
program unit, we bypass the rest of the SSAPRE steps. This method allows the
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

Partial Redundancy Elimination in SSA Form · 671

Table VI. Density of PRE Problems in SPECint95

average over each benchmark
A B C

benchmark nodes edges density

go 7.6 10.7 0.13

m88ksim 5.6 7.3 0.15

gcc 13.4 24.8 0.13

compress 4.4 4.6 0.22

li 5.0 6.5 0.22

ijpeg 6.5 8.0 0.26

perl 14.6 27.6 0.15

vortex 10.6 15.2 0.20

average 0.18

Table VII. Density of PRE Problems in SPECfp95

average over each benchmark
A B C

benchmark nodes edges density

tomcatv 14.3 20.8 0.l5

swim 6.2 6.7 0.24

su2cor 11.0 13.4 0.20

hydro2d 8.4 10.3 0.23

mgrid 7.5 9.0 0.32

applu 13.8 18.7 0.36

turb3d 10.1 11.5 0.48

apsi 7.7 9.1 0.25

fpppp 19.3 36.0 1.93

wave5 10.4 12.3 0.17

average 0.43

number of PRE candidates that require full processing by SSAPRE to be further
reduced. Column D in Tables IV and V shows the total number of expressions in
each benchmark that require full processing by SSAPRE after application of the
above check for bypassing. Column D/B shows that by combining the above two
schemes, SSAPRE has to fully process less than half of the original PRE candidates.
The rest of our measurements are made only on these fully processed expression
candidates.

7.3 Density

We define density to be the quotient of the size of the SSA graph formed during
SSAPRE and the size of the control flow graph of the program unit. A low value
for density implies that the FRG is much simpler than the control flow graph, so
that the sparse approach has greater speed advantage compared to any solution
method based on the control flow graph. We compute the size of a graph as the
number of nodes plus the number of edges. For our factored redundancy graphs,
the nodes are either real occurrences or Φ’s. The number of edges in the FRG is
equal to the number of real occurrences that reuse an existing class number (i.e.,
that are not assigned a new class number), plus the number of Φ operands in the
entire SSA graph. We perform this measurement during Rename1 of the delayed
renaming algorithm, when the FRG representation is at its largest.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

672 · Robert Kennedy et al.

Table VIII. Average Factored Redundancy Graphs in SPECint95

A B C D
benchmark real occs Φ’s B/A insertions C/A deletions D/A

go 2.9 4.7 164% 0.11 3.9% 1.47 51%

m88ksim 2.4 3.2 137% 0.16 6.9% 0.88 37%

gcc 2.7 10.7 396% 0.13 4.7% 1.00 37%

compress 1.7 2.6 150% 0.07 3.7% 0.56 32%

li 1.6 3.4 214% 0.04 2.7% 0.18 11%

ijpeg 2.3 4.1 176% 0.10 4.2% 0.66 28%

perl 2.8 11.8 424% 0.12 4.2% 0.69 25%

vortex 2.3 8.2 356% 0.28 11.9% 0.72 31%

average 2.3 6.1 252% 0.13 5.3% 0.77 32%

For each PRE candidate, we perform the above measurements and compute the
density of its FRG. Then we average the data over all the PRE candidates in each
benchmark. Tables VI and VII show the results for the SPECint95 and SPECfp95
benchmarks respectively. Columns A and B give the average number of nodes and
edges respectively in the factored redundancy graphs for the PRE candidates in each
benchmark. Column C gives the average density of the FRGs in each benchmark.
The average density ranges between 0.13 and 0.48, with the exception of fpppp,
which shows a density of 1.93. fpppp’s density is skewed by the routine FPPPP; the
average density for the routine FPPPP alone is 7.4, because it has only a single basic
block that contains hundreds of expression occurrences.

Among the SPECint95 benchmarks, the average density is 0.18. Among the
SPECfp95 benchmarks but excluding fpppp, the average density is 0.27. The lower
density in the SPECint95 benchmarks accounts for the observation in Section 7.1
that SSAPRE’s compile-time performance relative to a bit-vector-based PRE im-
plementation is better for SPECint95 than for SPECfp95.

7.4 PRE Opportunities

We characterize PRE problems by counting the number of real occurrences and Φ’s
in the FRG. Opportunities for PRE are represented by the number of insertions and
deletions performed. We perform these measurements for each FRG and average
them over all the PRE candidates in each benchmark. Columns A, B, C, and D in
Tables VIII and IX show these data for the SPECint95 and SPECfp95 benchmarks,
respectively. The additional columns show the ratios (in percent) of Φ’s, insertions,
and deletions to the real occurrences.

The factored redundancy graphs in the SPECfp95 benchmarks have more real
occurrences than those in the SPECint95 benchmarks, though the two benchmark
suites generate similar numbers of Φ’s per expression. There are more deletions in
the SPECfp95 benchmarks than in the SPECint95 benchmarks: on average, 55%
of the real occurrences are deleted in SPECfp95, while only 32% are deleted in
SPECint95. In contrast, insertions are quite rare, with only one insertion in every
five factored redundancy graphs in the SPECfp95 benchmarks. This shows that
the majority of the deletions are due to full rather than partial redundancy.
li shows the exceptionally low deletion percentage of 11%. According to Ta-

ble IV, li has 1878 lexically identified expressions distributed over 357 program
units. This translates to 5 expressions per program unit, out of which only 2 expres-
ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

Partial Redundancy Elimination in SSA Form · 673

Table IX. Average Factored Redundancy Graphs in SPECfp95

A B C D
benchmark real occs Φ’s B/A insertions C/A deletions D/A

tomcatv 4.1 10.2 250% 0.13 3.2% 1.96 48%

swim 2.9 3.3 116% 0.18 6.3% 1.58 55%

su2cor 4.8 6.2 130% 0.18 3.7% 2.69 56%

hydro2d 3.3 5.1 155% 0.31 9.4% 1.47 45%

mgrid 2.8 4.7 170% 0.31 11.2% 1.32 47%

applu 4.9 8.8 179% 0.30 6.1% 3.08 63%

turb3d 5.2 5.0 97% 0.17 3.4% 3.14 61%

apsi 3.0 4.7 155% 0.26 8.6% 1.56 52%

fpppp 5.6 13.7 244% 0.08 1.4% 3.88 69%

wave5 4.3 6.1 142% 0.25 5.7% 2.21 51%

average 4.1 6.8 164% 0.22 5.9% 2.29 55%

sions require full processing by SSAPRE. This low density of expressions requiring
full processing is atypical and may be related to the low incidence of redundancy
in li.

Overall, the number of deletions shown in Tables VIII and IX confirms the im-
portance of PRE in optimizing compilers.

8. CONCLUSION

In this article we present a sparse approach to the problem of redundancy elimi-
nation based on a factored representation of redundancy relations for expressions
in the program. Factoring at relevant control flow merge points is essential to ex-
posing partial redundancies, and this observation highlights for the first time the
close relationship between PRE and SSA form. The data flow analyses of PRE
are all focused on the locations of the factoring operator Φ. The SSAPRE frame-
work capitalizes on several prior techniques for computing and manipulating SSA
form. Meanwhile, SSAPRE depends on its input program being in SSA form for
maximum efficiency, and intrinsically produces its output in SSA form. SSAPRE
thus enables PRE to be seamlessly integrated into a global optimizer that uses SSA
as its internal representation. We have implemented SSAPRE as the redundancy
elimination framework in the MIPSpro version 7.2 compilers, and have gained valu-
able practical experience and empirical insight into the redundancy characteristics
of a broad cross-section of real programs.

Previous uses of SSA were directed at problems related to variables. SSAPRE
represents the first use of SSA to solve data flow problems related to expressions
in the program. This work opens up the possibility to solve other expression-
based data flow problems by representing them in the form of factored dependency
edges and performing data flow analyses on the resulting sparse graph. In Lo
et al. [1998], we have applied this approach in performing load and store placement
optimizations. Other candidate optimizations for using this framework are code
hoisting, register shrink-wrapping [Chow 1988], and live range shrinking.

PRE has traditionally provided the context for integrating additional optimiza-
tions into its framework; one such optimization is operator strength reduction [Joshi
and Dhamdhere 1982; Chow 1983; Dhamdhere 1989; Knoop et al. 1993; Dhanesh-
war and Dhamdhere 1995]. In Kennedy et al. [1998], we present techniques that

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

674 · Robert Kennedy et al.

allow strength reduction and linear function test replacement to be performed in
the SSAPRE framework. In Lo et al. [1998], we present techniques to incorporate
speculative code motion in the SSAPRE framework, including one that can use ex-
ecution profile data to improve code placement over what can be accomplished by
PRE without speculation. Combining optimizations permits synergy among their
effects, with results that often exceed expectations.

NOTATION AND CONVENTIONS

In this section we offer a table of symbols with a terse definition of each one and a
pointer for each to the section of our article where the item is defined or explained
in more detail.

notation term
DT dominator tree Section 2.1, page 630.
DF dominance frontier Section 2.1, page 630.

DF+ iterated dominance frontier Section 2.1, page 630.
φ SSA factoring operator Section 2.2, page 630
vi SSA version i of variable v Section 2.2
Φ redundancy factoring operator Section 2.3, page 633
⊥ non-partially-redundant operand of Φ Section 2.3, page 633
E an arbitrary computation or expression Section 2.3
Ei particular occurrence of a computation Section 2.3
E(j) jth lexically identified expression Section 3, page 637
t expression temporary Section 2.5
ψi expression evaluation Definition 5, page 639
F set of Φ’s for current expression Section 3, page 639
ν an arbitrary expression operand Lemmas 1, 4, and 10

ACKNOWLEDGMENTS

The authors would like to thank Rune Dahl and the anonymous referees; their
comments on an earlier draft are responsible for substantial improvments in our
presentation.

REFERENCES

Alpern, B., Wegman, M. N., and Zadeck, F. K. 1988. Detecting equality of values in pro-
grams. In Conference Record of the Fifteenth ACM Symposium on Principles of Programming
Languages. 1–11.

Briggs, P. and Cooper, K. 1994. Effective partial redundancy elimination. In Proceedings of
the ACM SIGPLAN ’94 Conference on Programming Language Design and Implementation.
159–170.

Briggs, P., Cooper, K. D., and Simpson, L. T. 1997. Value numbering. Software Practice and
Experience 27, 6 (June), 701–724.

Choi, J., Cytron, R., and Ferrante, J. 1991. Automatic construction of sparse data flow
evaluation graphs. In Conference Record of the Eighteenth ACM Symposium on Principles of
Programming Languages. 55–66.

Choi, J., Sarkar, V., and Schonberg, E. 1996. Incremental computation of static single assign-
ment form. In Proceedings of the Sixth International Conference on Compiler Construction.
223–237.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

Partial Redundancy Elimination in SSA Form · 675

Chow, F. 1983. A portable machine-independent global optimizer – design and measurements.
Tech. Rep. 83-254 (PhD Thesis), Computer Systems Laboratory, Stanford University. Dec.

Chow, F. 1988. Minimizing register usage penalty at procedure calls. In Proceedings of the ACM
SIGPLAN ’88 Conference on Programming Language Design and Implementation. 85–94.

Chow, F., Chan, S., Kennedy, R., Liu, S., Lo, R., and Tu, P. 1997. A new algorithm for
partial redundancy elimination based on SSA form. In Proceedings of the ACM SIGPLAN ’97
Conference on Programming Language Design and Implementation. 273–286.

Chow, F., Chan, S., Liu, S., Lo, R., and Streich, M. 1996. Effective representation of aliases and

indirect memory operations in SSA form. In Proceedings of the Sixth International Conference
on Compiler Construction. 253–267.

Chow, F., Himelstein, M., Killian, E., and Weber, L. 1986. Engineering a RISC compiler. In
Proceedings of IEEE COMPCON. 132–137.

Click, C. 1995. Global code motion global value numbering. In Proceedings of the ACM SIGPLAN
’95 Conference on Programming Language Design and Implementation. 246–257.

Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck, F. K. 1991. Efficiently
computing static single assignment form and the control dependence graph. ACM Trans. on
Programming Languages and Systems 13, 4 (Oct.), 451–490.

Dhamdhere, D. 1988. A fast algorithm for code movement optimisation. SIGPLAN Notices 23, 1,
172–180.

Dhamdhere, D. 1989. A new algorithm for composite hoisting and strength reduction optimiza-
tion (+ corrigendum). Journal of Computer Mathematics 27, 1–14 (+ 31–32).

Dhamdhere, D., Rosen, B., and Zadeck, K. 1992. How to analyze large programs efficiently
and informatively. In Proceedings of the ACM SIGPLAN ’92 Conference on Programming
Language Design and Implementation. 212–223.

Dhaneshwar, V. M. and Dhamdhere, D. M. 1995. Strength reduction of large expressions.
Journal of Programming Languages 3, 95–120.

Drechsler, K. and Stadel, M. 1988. A solution to a problem with morel and renvoise’s “global
optimization by suppression of partial redundancies”. ACM Trans. on Programming Languages
and Systems 10, 4 (Oct.), 635–640.

Drechsler, K. and Stadel, M. 1993. A variation of Knoop, Rüthing and Steffen’s lazy code
motion. SIGPLAN Notices 28, 5 (May), 29–38.

Gerlek, M., Stoltz, E., and Wolfe, M. 1995. Beyond induction variables: Detecting and clas-
sifying sequences using a demand-driven SSA form. ACM Trans. on Programming Languages
and Systems 17, 1 (Jan.), 85–122.

Gerlek, M., Wolfe, M., and Stoltz, E. 1994. A reference chain approach for live variables.
Tech. Rep. CSE 94-029, Oregon Graduate Institute. Apr.

Johnson, R., Pearson, D., and Pingali, K. 1994. The program structure tree: Computing control
regions in linear time. In Proceedings of the ACM SIGPLAN ’94 Conference on Programming
Language Design and Implementation. 171–185.

Joshi, S. M. and Dhamdhere, D. M. 1982. A composite hoisting-strength reduction transforma-
tion for global program optimization. International Journal of Computer Mathematics Parts
I & II 11, 1 and 2, 21–41 and 111–126.

Kennedy, K. 1972. Safety of code motion. International Journal of Computer Mathematics 3, 2
and 3, 117–130.

Kennedy, R., Chow, F., Dahl, P., Liu, S., Lo, R., and Streich, M. 1998. Strength reduction via
SSAPRE. In Proceedings of the Seventh International Conference on Compiler Construction.

Knoop, J., Rüthing, O., and Steffen, B. 1992. Lazy code motion. In Proceedings of the ACM
SIGPLAN ’92 Conference on Programming Language Design and Implementation. 224–234.

Knoop, J., Rüthing, O., and Steffen, B. 1993. Lazy strength reduction. Journal of Program-
ming Languages 1, 1 (Mar.), 71–91.

Knoop, J., Rüthing, O., and Steffen, B. 1994. Optimal code motion: Theory and practice.
ACM Trans. on Programming Languages and Systems 16, 4 (Oct.), 1117–1155.

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

676 · Robert Kennedy et al.

Liu, S., Lo, R., and Chow, F. 1996. Loop induction variable canonicalization in parallelizing
compilers. In Proceedings of the Fourth International Conference on Parallel Architectures and
Compilation Techniques. 228–237.

Lo, R., Chow, F., Kennedy, R., Liu, S., and Tu, P. 1998. Register promotion by sparse par-
tial redundancy elimination of loads and stores. In Proceedings of the ACM SIGPLAN ’98
Conference on Programming Language Design and Implementation.

Morel, E. and Renvoise, C. 1979. Global optimization by suppression of partial redundancies.
Comm. ACM 22, 2 (Feb.), 96–103.

Muchnick, S. 1997. Advanced Compiler Design and Implementation. Morgan Kaufmann Pub-
lishers, San Francisco.

Rosen, B. K., Wegman, M. N., and Zadeck, F. K. 1988. Global value numbers and redun-
dant computations. In Conference Record of the Fifteenth ACM Symposium on Principles of
Programming Languages. 12–27.

Schwarz, B., Kirchgässner, W., and Landwehr, R. 1988. An optimizer for Ada – Design,
experiences and results. In Proceedings of the ACM SIGPLAN ’88 Conference on Programming
Language Design and Implementation. 175–184.

Simpson, L. T. 1996. Value-driven redundancy elimination. Tech. Rep. (PhD Thesis), Dept. of
Computer Science, Rice University. Apr.

Sreedhar, V. and Gao, G. 1995. A linear time algorithm for placing φ-nodes. In Conference
Record of the Twenty Second ACM Symposium on Principles of Programming Languages. 62–
73.

Wegman, M. and Zadeck, K. 1991. Constant propagation with conditional branches. ACM
Trans. on Programming Languages and Systems 13, 2 (Apr.), 181–210.

Wolfe, M. 1996. High Performance Compilers For Parallel Computing. Addison Wesley.

Received April 1998; revised January 1999; accepted February 1999

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, May 1999.

	Introduction
	SSA and Sparse PRE
	Control Flow and Dominance
	SSA Form
	Foundation of Sparse PRE
	Basics of PRE
	A Central Observation
	The FRG in SSAPRE

	SSAPRE Algorithm
	The Phi-Insertion Step
	The Rename Step
	The DownSafety Step
	The WillBeAvail Step
	The Finalize Step
	The CodeMotion Step

	Theoretical Results
	Practical Implementation
	Worklist-Driven PRE
	Nested Expressions
	Demand-Driven Phi Insertion
	Delayed Renaming
	Efficient save Computation in Finalize

	Analysis
	Measurements
	Optimization Time Measurements
	Expression Candidates
	Density
	PRE Opportunities

	Conclusion
	Acknowledgments
	References

