
COMP4141 Theory of Computation
Complexity Hierarchy

Ron van der Meyden

CSE, UNSW

Revision: 2016/05/11

We have introduced several complexity classes, and have shown
results of the form C ⊆ C′, but have generally had to say “we don’t
know if this containment is strict.”

In general, separation results seem to be hard to prove.

But we do know some.

Reminder: big Oh

Let f , g : N −→ N.

Definition

f = O(g) if there exists constants c, n0 ∈ N such that for all
n ≥ n0 we have f (n) < c · g(n).

Little oh

Definition

f = o(g) if

lim
n→∞

f (n)

g(n)
= 0

or, equivalently, for all real constants c > 0 there exists n0 ∈ N
such that for all n ≥ n0 we have f (n) < c · g(n).

Examples:

1
n = o(1)
√
n = o(n)

nk = o(nk+1)

n · log n = o(n2)

Space Constructibility

To state a space hierarchy theorem, we need the following
technicality:

Definition

A function f : N −→ N with f (n) ≥ log n is space constructible if
there exists a TM M that runs in space O(f (n)) that on input 1n

computes a binary representation of f (n).

Space Hierarchy Theorem

Theorem

Let f : N −→ N be space constructible. Then there exists a
language A that is decidable in space O(f (n)) but not in space
o(f (n)).

Corollary

if f1, f2 : N −→ N with f1 = o(f2) and f2 is space constructible,
then SPACE(f1) (SPACE(f2)

Examples:

for 0 ≤ ε1 < ε2, SPACE(nε1) (SPACE(nε2)

SPACE((log n)2) (SPACE(n)

Since NL ⊆ SPACE((log n)2) by Savitch, we derive
NL (SPACE(n) and NL (PSPACE

SPACE(nlog n) (SPACE(2n)

Since SPACE(nk) ⊆ SPACE(nlog n) for all k, we derive

PSPACE (EXPSPACE =
⋃

k SPACE(2n
k
)

Proof of Space Hierarchy Theorem I

Intuition: by Diagonalization. We construct a language
A ∈ SPACE(f (n)) that differs from the language accepted by any
o(f (n)) space machine M on at least one string wM .

In particular, we would like to pick wM = 〈M〉 and have 〈M〉 6∈ A
iff M accepts 〈M〉.

Problem:

(1) Simulating an arbitrary M that runs in space g within a fixed
TM D requires space cM · g(n) for some constant cM that
depends on M, since M may have more tape symbols than D.

(2) g = o(f) implies that g(n) < 1
cM
· f (n), which resolves (1),

but only for n ≥ n0, whereas we may have |〈M〉| < n0.

Solution: Simulate M for multiple inputs of the form
w = 〈M〉#1k .

Proof of Space Hierarchy Theorem II

Let A be the language decided by the following machine D that
uses space O(f (n)):

D =
“On input w with |w | = n:

1 If w is of the form 〈M〉#1k for some TM M, continue,
else reject

2 Compute f (n) and mark out space f (n). If later steps leave
this area, reject

3 Simulate M on input w while counting computation steps:

if the count exceeds 2f (n), reject
if M accepts, reject
if M rejects, accept”

Proof of Space Hierarchy Theorem III

(Comment: It is undecidable whether a machine runs in space
o(f (n)). But A doesn’t care about machines that take more than
this, we just need to make sure we have covered at least the space
o(f (n)) ones.)

Suppose M runs in space g = o(f). We show by contradiction
that M does not decide A. Suppose it does.

Let cM be the tape symbol simulation cost factor for D to simulate
M.

For some n0 we have n ≥ n0 implies cM · g(n) < f (n), so on input
w = 〈M〉#1n0 , the simulation of M on w runs in space f (n) and
terminates.

But then the decision of D(w) and M(w) are the opposite. So M
does not decide A = L(D). Contradiction.

Can we get a similar separation result for time complexity classes?

Complication: simulating one-tape TM’s for a time-bound t
requires moving the head backwards and forwards between
representations of the working tape, machine being simulated, and
clock bits. This costs time!

Key idea: encode three tracks of information in each tape symbol
of the simulating machine: working tape symbol, machine, clock.
At each simulation step, move the machine and clock
representations so that they stay near the position of the head on
the working tape.

working tape

machine M

clock value

working tape

machine M

clock value

(head moves right)

Now the overhead of simulation is a time factor of
O(|〈M〉|+ log t).

Time Hierarchy Theorem
Definition

A function t : N −→ N with t(n) ≥ n log n is time constructible if
the function that maps string 1n to the binary representation of
t(n) is computable in time O(t(n)).

Theorem (Time Hierarchy Theorem)

For any time constructible function t : N −→ N there exists a
language A that is decidable in time O(t(n)) but not decidable in

time o(t(n)
log t(n)).

Proof.

Similar to proof of space hierachy theorem, but using the
|〈M〉|+ log t simulation trick. The |〈M〉| is constant where it is
needed in the proof. (See Sipser Thm 9.10)

Corollary

If t1, t2 : N −→ N satisfy t1(n) = o(t2(n)/ log t2(n)) and t2 is time
constructible, then TIME(t1(n)) (TIME(t2(n)).

Examples:

For real numbers 1 ≤ ε1 < ε2, we have
TIME(nε1) (TIME(nε2).

P (EXPTIME =
⋃

k TIME(2n
k
)

The problem of equivalence of regular expressions using the
additional construct

R ↑ k = R · R · . . . · R (concatenate k copies of R)

is EXPTIME-complete, so is not in P. (Sipser Thm 9.15)

	Hierarchy
	Intro

