
COMP4141 Theory of Computation
Lecture 4 Regular Languages cont.

Ron van der Meyden

CSE, UNSW

Revision: 2013/03/14

(Credits: David Dill, Thomas Wilke, Kai Engelhardt, Peter Höfner,
Rob van Glabbeek)

Regular Expression Definition
Regular expressions are defined relative to some alphabet Σ.
This is a recursive definition of the structure of regular expressions.
The structure of regular expressions is the basis for other recursive
definitions and induction proofs. Every recursive definition and
proof has to handle these six cases:

a is a regular expression, if a ∈ Σ.

∅ is a regular expression.

ε is a regular expression.

R1 ∪ R2 is a regular expression if R1 and R2 are.

R1 ◦ R2 is a regular expression if R1 and R2 are.

R∗ is a regular expression if R is.

Parentheses can be added in the obvious places to override
precedence: ∗ has the highest precedence, followed by ◦, and
finally ∪ which has the lowest precedence, so
a ∪ b ◦ c∗ = a ∪ (b ◦ (c∗)). The first three definitions can be
considered base cases while the last three are inductive.

Language of a Regular Expression
Let R be a regular expression. The language L(R) of R is defined
recursively on the structure of R.

Case R is a for some a ∈ Σ: L(a) = {a}
Case R is ∅: L(∅) = ∅
Case R is ε: L(ε) = {ε}
Case R is R1 ∪ R2: L(R1 ∪ R2) = L(R1) ∪ L(R2)

Case R is R1 ◦ R2: L(R1 ◦ R2) = L(R1)L(R2)

Case R is R∗1 : L(R∗1) = (L(R1))∗

NB

L relates each syntactic object to a semantic object, whence we
also call it a semantics for reg. exps.

L : REΣ −→ 2Σ∗

From Regular Expressions to Finite Automata

Theorem

For every regular expression R, there is an ε-NFA NR such that
L(R) = L(NR).

Proof.

by induction on the structure of R. For each of the three base
cases and each of the three inductive cases we define an ε-NFA
which recognises L(R).

From Regular Expressions to Finite Automata cont.

q0 q1
a

q1

q0

a

ε

∅

From Regular Expressions to Finite Automata cont.

Base Cases (formally):

Na = ({q0, q1},Σ, δa, q0, {q1}) where δa(q0, a) = {q1} and
δa(q, s) = ∅, for all (q, s) 6= (q0, a).

N∅ = ({q0},Σ, δ∅, q0, ∅) where δ∅(q0, s) = ∅ for all
s ∈ Σ ∪ {ε}.
Nε = ({q0},Σ, δ∅, q0, {q0}).

From Regular Expressions to Finite Automata
(Union)

R1

R2

From Regular Expressions to Finite Automata
(Union)

R1

R2

ε

ε

R1∪R2

From Regular Expressions to Finite Automata
(Concatenation)

R1

R2

From Regular Expressions to Finite Automata
(Concatenation)

R1

R2
ε

R1R2
ε ε

From Regular Expressions to Finite Automata
(Kleene Star)

R

From Regular Expressions to Finite Automata
(Kleene Star)

R

R*
εε

ε

From Regular Expressions to Finite Automata cont.
Inductive Cases (formally):

For i ∈ {1, 2} let Ni = (Qi ,Σ, δi , q
(i)
0 ,Fi) be an ε-NFA

satisfying L(Ni) = L(Ri) according to the induction
hypothesis. Moreover we assume w.l.o.g. that the two sets of
states, Q1 and Q2 are disjoint and do not contain q0.
NR1∪R2 = ({q0} ∪ Q1 ∪ Q2,Σ, δ1 ∪ δ2 ∪{

(q0, ε) 7→ q
(i)
0 | 1 ≤ i ≤ 2

}
, q0,F1 ∪ F2).

With the same Ni as in the previous case, define
NR1◦R2 = (Q1 ∪ Q2,Σ, δ1 ∪ δ2 ∪{

(q, ε) 7→ δ1(q, ε) ∪ {q(2)
0 } | q ∈ F1

}
, q

(1)
0 ,F2).

Let N = (Q,Σ, δ, q′0,F) be an ε-NFA satisfying L(N) = L(R1)
according to the induction hypothesis. W.l.o.g. assume that
q0 /∈ Q. Define
NR∗

1
= ({q0}∪Q,Σ, δ∪{ (q, ε) 7→ q′0 | q ∈ F ∪ {q0} } , q0,F).

Implications

We already know that ε-NFAs, NFAs, and DFAs have equal
expressive power.

The latest theorem shows that FA are at least as expressive as
regular expressions.

Next: Can we do anything with a FA that we cannot do with a
regular expression?

From FA to Regular Expressions

Theorem

For every finite automaton (any type) A, there is a regular
expression R such that L(R) = L(A).

FA → RE

Let Σ be an alphabet. We write REΣ for the set of all regular
expressions over Σ.

Roadmap: DFA −→ GNFA −→ REΣ

where a GNFA is an NFA with

regular expressions instead of symbols as labels on transitions,

a unique final state,

and a full transition relation, except that there are no
transitions either (a) into the start state or (b) out of the
accept state.

GNFA example

q0 qF

(aba)*

b
a*

ba

(a∪b)*

(ba)*
(a∪ba)*∪b

b

∅

∅

∅ε

∅

GNFAs

Definition

A generalised non-deterministic finite automaton (GNFA) is a
5-tuple (Q,Σ, δ, q0, qF) where

1 Q is finite set of states,

2 Σ is the input alphabet,

3 δ : (Q \ {qF})× (Q \ {q0}) −→ REΣ is the transition function,

4 q0 ∈ Q is the start state, and

5 qF ∈ Q is the accept state.

Language of a GNFA

Definition

A GNFA accepts a string w ∈ Σ∗ if there exists a k ∈ N, a
sequence of states q1, . . . , qk , and a sequence of strings w1, . . . ,wk

such that

1 w = w1 . . .wk

2 wi ∈ L(δ(qi−1, qi)), for i ∈ {1, . . . , k}
3 qk = qF

Note that this already implies that execution started at q0.

DFA −→ GNFA

This is straightforward.

Add a new start state, connect it via an ε transition to the
original start state (which is no longer the initial state).

Add a new accept state, connect all the original accept states
via ε transition to it. (They are no longer accept states.)

Between pairs (q, q′) of original states, replace all existing
transitions by a single one labeled with the (regular expression)
union of the labels on the original transitions from q to q′.

Introduce ∅-labeled transitions where needed (e.g. from the
new start state to all but the old start state).

Example DFA −→ GNFA

q0 q1

q2

1
0

1

0

0

1

Example DFA −→ GNFA

q0
′ q1

q2

q0

1
0

1

0

0

1

ε

Example DFA −→ GNFA

q0
′ q1

q2

q0

qF

1
0

1

0

0

1

ε

ε

Example DFA −→ GNFA

q0
′ q1

q2

q0

qF

1
0

1

0

0

1

ε

ε
∅

∅

∅
∅

∅

∅
∅

∅

GNFA −→ REΣ

The gist of this construction is to eliminate all inner states of the
GNFA (i.e. the states of the original DFA) one by one. When all of
them are gone, only q0 and qF remain. The only remaining
transition (from q0 to qf) is labeled with the regular expression
we’re after.

To eliminate an “inner” state qrip, we need to augment the labels
on every transition from qi 6= qrip to qj 6= qrip:

qi qj

qrip

R1

R4

R3

R2

qi qj
(R1)(R2)

∗(R3) ∪ (R4)

Example GNFA −→ REΣ

q′0 q1

q2

q0

qF

1

0

1

0

0

1

ε

ε

∅

∅

∅
∅

∅

∅
∅

∅

Example GNFA −→ REΣ

q′0

q2

q0

qF

0∅∗1 ∪ 1

0

1

ε

ε

∅

∅

0∅∗0 ∪ ∅

∅

Example GNFA −→ REΣ

q′0

q2

q0

qF

01 ∪ 1

0

1

ε

ε

∅

∅

00

∅

Example GNFA −→ REΣ

q′0

q0

qF

000∗1 ∪ 01 ∪ 1

ε

∅

000∗ε ∪ ∅

Example GNFA −→ REΣ

q′0

q0

qF

000∗1 ∪ 01 ∪ 1

ε

∅

000∗

Example GNFA −→ REΣ

q0

qF

ε(000∗1 ∪ 01 ∪ 1)∗000∗ ∪ ∅

Example GNFA −→ REΣ

q0

qF

(000∗1 ∪ 01 ∪ 1)∗000∗

How to Prove Non-Regularity

Finite automata have their limits when it comes to characterising
languages. A DFA with k states must have visited at least one of
its states repeatedly to accept a word of length > k . It has gone
through a loop. The DFA must therefore also accept all words
generated by going through that loop any number of times.
This is what we call pumping.

Theorem (Pumping Lemma)

If L ⊆ Σ∗ is regular then there exists p ∈ N (the pumping length)
where, if w ∈ L with |w | ≥ p, then w may be split into three
pieces, w = xyz, satisfying the following conditions:

1 xy iz ∈ L, for all i ∈ N,

2 |y | > 0, and

3 |xy | ≤ p.

Proof of the Pumping Lemma

Proof.

Let L be any regular language. We know there is a DFA A that
accepts the same language. Let n be the number of states in that
DFA. Let w be any string in L such that |w | ≥ n. Let
u = a1a2 . . . an be the prefix of w such that |u| = n. Consider the
sequence of states p0p1 . . . pn such that p0 = q0 and
δ̂(p0, a1a2 . . . ai) = pi . There are n + 1 positions in the sequence of
states, so, by the pigeonhole principle, there is at least one state
that appears at two distinct positions; call the first position i and
the second j . So, 0 ≤ i < j ≤ n and pi = pj . So w can be broken

up into xyz where δ̂(q0, x) = pi , δ̂(pi , y) = pj = pi and

δ̂(pj , z) ∈ F . |xy | ≤ n by the pigeonhole principle. y 6= ε because
j > i . Every string of the form xykz for k ≥ 0 is in L, because
δ̂(q0, xyk) = pi , hence δ̂(q0, xykz) = δ̂(pi , z) ∈ F .

Non-Regularity Proofs with the Pumping Lemma

How can we use the Pumping Lemma to prove that a given
language L is not regular? We use its contrapositive, that is:

L can’t be pumped ⇒ L is not regular.

Non-Regularity Proof Example

Example

Consider L1 =
{

aibi | i ∈ N
}

. Assume to the contrary that L1 is
regular and that p is its pumping length. Choose w = apbp. Next
we show that regardless of how we split w into xyz , none of these
splits satisfies all three conditions given in the Pumping Lemma.

Case y consists only of a’s: Then xyyz contains more as than bs
and is thus not in L1, violating condition 1.

Case y contains b’s: Then |xy | > p, violating condition 3.

Case y = ε: violates 2.

Limits of the Pumping Lemma

Consider the language L2 =
{

c iajbk | i = 1⇒ j = k + 1
}

.

Is it regular?

No. Assume to the contrary that it is regular. We’ll try to “chop
off” the leading c to relate L2 to L1. Let’s define the left quotient
of a language B by a word w :

w\B = { v ∈ Σ∗ | wv ∈ B }

Exercise: show w\B is regular when B is.

It follows that ca\L2 =
{

aibi | i ∈ N
}

= L1 would be regular,
too. But we’ve just proved it is not regular. Contradiction!

Limits of the Pumping Lemma cont.
Assume again that L2 is regular and that p > 1 is its pumping
length. Can we lead this to a contradiction?

Let w ∈ L2 such that |w | ≥ p. We choose x and y (and implicitly
z) such that w = xyz depending on the number ‖w‖c of cs in w .

Case ‖w‖c = 0: Choose x = ε and y = first letter of w .

Case 0 < ‖w‖c ≤ 3: Choose x = ε and y = c‖w‖c .

Case ‖w‖c > 3: Choose x = ε and y = cc .

In each case we can pump without leaving L2, that is, xy iz ∈ L2,
for all i ∈ N.

We conclude that

L can be pumped
6⇒
⇐ L is regular

The Myhill-Nerode Theorem

This theorem provides another exact characterisation of the regular
languages. We use it to prove non-regularity—mostly when the
pumping lemma fails.

Let L ⊆ Σ∗. If there exists a z ∈ Σ∗ such that xz ∈ L and yz /∈ L
(or vice versa), we call x and y distinguishable by L.

We write x ≡L y if x and y are not distinguishable by L.

(Equivalently, x ≡L y when xz ∈ L⇔ yz ∈ L for all z ∈ Σ∗.)

NB

≡L is an equivalence relation on Σ∗. what?

We write [w]L for the ≡L-equivalence class { v ∈ Σ∗ | w ≡L v }
of w .

Definition

The index of L is the number of its ≡L-equivalence classes.

The Myhill-Nerode Theorem

Theorem (Myhill-Nerode)

L ⊆ Σ∗ is regular iff the index of L is finite.

Sketch of proof.

“⇒”: Let A = (Q,Σ, δ, q0,F) be a DFA with L(A) = L. Show
that |Q| ≥ index of L.
“⇐”: Assume the index of L is finite. Define the DFA

AL = ({ [w]L | w ∈ Σ∗ } ,Σ, δL, [ε]L,FL)

where δL([w]L, a) = [wa]L and FL = { [w]L | w ∈ L }. Show that
L(AL) = L. details

Using the Myhill-Nerode Theorem
How can we use Myhill-Nerode to prove that a given language L is
not regular? We use the contrapositive of the “⇒” direction of the
theorem.

More specifically, it suffices to find an infinite sequence u0, u1, . . .
of strings such that for all i 6= j there exists a string wij such that
uiwij ∈ L but ujwij /∈ L (or vice versa).

It follows that ui /∈ [uj]L for all distinct i , j ∈ N and hence there are
infinitely many ≡L-equivalence classes, that is, the index of L is
not finite.

Examples

L1 =
{

aibi | i ∈ N
}

. Choose ui = ai and wij = bi .

Recall L2 =
{

c iajbk | i = 1⇒ j = k + 1
}

. Choose
ui = cai+1 and wij = bi .

—The End—

Reminder: Binary Relations
Let A and B be sets. Any R ⊆ A× B is called a binary relation.
We often write aRb for (a, b) ∈ R.

If the first and second set are the same, i.e. R ⊆ A2, we call R a
binary relation on A and define the following properties of such
relations. Say that R is:

reflexive if aRa for all a ∈ A.

irreflexive if aRa for no a ∈ A.

transitive if aRb ∧ bRc ⇒ aRc for all a, b, c ∈ A.

symmetric if aRb ⇒ bRa for all a, b ∈ A.

anti-symmetric if aRb ∧ bRa⇒ a = b for all a, b ∈ A.

an equivalence relation if it’s reflexive, transitive, and
symmetric.

a partial order if it’s reflexive, transitive, and anti-symmetric.

a strict partial order if it’s irreflexive, transitive, and
anti-symmetric. back

Proof of AL = L

To prove that AL = L we show for all w ∈ Σ∗ that

δ̂L([ε]L,w) = [w]L . (1)

Then we conclude that

w ∈ L(AL)⇔ δ̂L([ε]L,w) ∈ FL def L(DFA)

⇔ [w]L ∈ FL by (1)

⇔ w ∈ L

Proof of δ̂L([ε]L,w) = [w]L

Proof.

by induction on the length of w .
Base case: δ̂L([ε]L, ε) = [ε]L by definition of δ̂ for DFAs.
Inductive case:

δ̂L([ε]L, va) = δL(δ̂L([ε]L, v), a) def. δ̂ for DFAs

= δL([v]L, a) ind. hyp.

= [va]L def. δL

back

	FA RE
	GNFA
	GNFA -3mu

	Proving Non-Regularity
	Pumping Lemma
	Myhill-Nerode Theorem

	Appendix

