COMP4141 Theory of Computation Lecture 5 Context-Free Languages

Ron van der Meyden

CSE, UNSW

Revision: Date: 2014/03/17

(Credits: David Dill, Thomas Wilke, Kai Engelhardt, Peter Höfner, Rob van Glabbeek)

Context-Free Languages

Regular languages have many wonderful properties, but not all languages are regular. (E.g. $\{ a^i b^i \mid i \in \mathbb{N} \}$, arithmetic expressions)

Next, we'll study a more powerful class of languages, the *context-free languages* (*CFL*s).

CFLs were identified in the 1950's by linguist Noam Chomsky, as a natural place in a hierarchy of languages, which included the regular languages.

Formal Definition of Context-Free Grammars

Definition

A context-free grammar (CFG) is a 4-tuple (N, Σ, P, S) , where

2 Σ is a finite set, disjoint from *N*, of *terminals*,

3)
$$P \subseteq N imes (N \cup \Sigma)^*$$
 is a finite set of *rules*, and

• $S \in N$ is the start variable.

Variables are often called *non-terminal symbols*, terminals are often called *terminal symbols*, rules also go under the name *productions*, and the start variable is also known as the *sentence symbol*.

Notational Conventions for CFGs

Typically,

- upper case letters A, B, S, ... are used for variables,
- $a, b, c, 0, 1 \dots$ for terminals,
- w, x, y, z for strings of terminals (Σ^*), and
- α, β, γ,... for strings of terminals and/or variables ((N ∪ Σ)*).
 Productions are written as in

$$A
ightarrow \mathtt{a}B\mathtt{c}$$

Here

- A is the left-hand side (LHS), also called the *head*, and
- aBc is the right-hand side (RHS), also called the *body*.

Several productions with common heads can be combined:

 $A \rightarrow a \mid Aa \mid bAb$



Derivations

The language of a given CFG, $G = (N, \Sigma, P, S)$, can be characterized using the concept of a *derivation*.

Definition

Derivation step: $\alpha A\beta \Rightarrow_{\mathsf{G}} \alpha \gamma \beta$ whenever $A \rightarrow \gamma \in \mathsf{P}$.

Define \Rightarrow_G^* to be the *reflexive transitive closure* of \Rightarrow_G . That is, $\alpha \Rightarrow_G^* \beta$ if we can get from α to β in zero or more steps.

The language of G is

$$L(G) = \{ w \in \Sigma^* \mid S \Rightarrow^*_G w \}$$

Example

lf

$$G = (\{S\}, \{0, 1\}, \{S \to \epsilon \mid 0S1\}, S)$$

then

$$S \Rightarrow^*_G 0011$$
 because $S \Rightarrow_G 0S1 \Rightarrow_G 00S11 \Rightarrow_G 0011$.

Apparently, $L(G) = \{ 0^i 1^i \mid i \in \mathbb{N} \}$

Example: Grammar for Regular Expressions

Suppose $\Sigma = \{a, b\}$.

 $S \rightarrow \emptyset \mid \epsilon \mid a \mid b \mid S \cup S \mid S \circ S \mid S^* \mid (S)$

 $(a \cup b \circ a)^*$ is a regular expression because $S \Rightarrow_G S^* \Rightarrow_G (S)^* \Rightarrow_G (S \cup S)^* \Rightarrow_G (S \cup S \circ S)^* \Rightarrow_G (a \cup S \circ S)^* \Rightarrow_G (a \cup S \circ a)^* \Rightarrow_G (a \cup b \circ a)^*.$

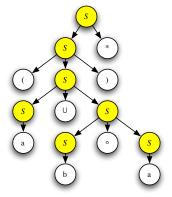
Parse Trees

A *parse tree* is a tree that shows how to derive a string from a non-terminal.

The children of a node in the tree correspond to the body of a production that has the node as head.

For $A \rightarrow \epsilon$, there is a single child, ϵ .

Parse tree for $(a \cup b \circ a)^*$:



Yield of a Parse Tree

The concatenation of the symbols at the leaves of a parse tree is called the *yield* of the parse tree.

The yield can always be derived from the symbol at the root of the tree. If the root is S and the yield is $x \in \Sigma^*$, then $x \in L(G)$.

Leftmost Derivations

There are many ways to extract a derivation from a parse tree. If we put a restriction on how the derivation is done, we can get the derivation uniquely.

Definition

A derivation of a string w in a grammar G is a *leftmost derivation* if at every step the leftmost remaining variable is the one replaced.

Example

 $\frac{\underline{S}}{\underline{S}} \Rightarrow_{\underline{G}} \underline{\underline{S}}^* \Rightarrow_{\underline{G}} (\underline{\underline{S}})^* \Rightarrow_{\underline{G}} (\underline{\underline{S}} \cup \underline{S})^* \Rightarrow_{\underline{G}} (\underline{a} \cup \underline{\underline{S}})^* \Rightarrow_{\underline{G}} (\underline{a} \cup \underline{b} \circ \underline{\underline{S}})^* \Rightarrow_{\underline{G}} (\underline{a} \cup \underline{b} \circ \underline{a})^*$

where we have underlined the leftmost variable at each step

Ambiguity

A CFG is *ambiguous* if there is more than one leftmost derivation for the same string.

Equivalently: more than one parse tree for the same string.

Ambiguity often causes problems:

- With interpretation.
- With parsing.

Is our grammar for regular expressions ambiguous? Yes, but it needn't be.

Example: Unambiguous Grammar for RE_{Σ}

 $G_{\mathsf{RE}_{\Sigma}} = (\{U, C, K, T\}, \Sigma \cup \{\epsilon, \emptyset, \cup, \circ, *, (,)\}, P, U) \text{ where the rules } P \text{ are:}$

$$U \to U \cup C \mid C$$

$$C \to C \circ K \mid K$$

$$K \to T^* \mid T$$

$$T \to (U) \mid \emptyset \mid \epsilon \mid a \mid b \mid \dots$$

 $\begin{array}{l} (\mathbf{a} \cup \mathbf{b} \circ \mathbf{a})^* \text{ is a regular expression according to } G_{\mathsf{RE}_{\{\mathbf{a},\mathbf{b}\}}} \text{ because} \\ U \Rightarrow_G C \Rightarrow_G K \Rightarrow_G T^* \Rightarrow_G (U)^* \Rightarrow_G (U \cup C)^* \Rightarrow_G (C \cup C)^* \Rightarrow_G \\ (K \cup C)^* \Rightarrow_G (T \cup C)^* \Rightarrow_G (\mathbf{a} \cup C)^* \Rightarrow_G (\mathbf{a} \cup C \circ K)^* \Rightarrow_G (\mathbf{a} \cup K \circ K)^* \Rightarrow_G (\mathbf{a} \cup T \circ K)^* \Rightarrow_G (\mathbf{a} \cup \mathbf{b} \circ K)^* \Rightarrow_G (\mathbf{a} \cup \mathbf{b} \circ K)^* \Rightarrow_G (\mathbf{a} \cup \mathbf{b} \circ \mathbf{a})^*. \end{array}$

Inherently Ambiguous CFLs

Some languages are context-free but don't have unambiguous CFGs.

$$\left\{ \mathbf{a}^{i}\mathbf{b}^{j}\mathbf{c}^{k} \mid i = j \lor j = k \right\}$$

Intuition: This is the union of two unambiguous grammars, but they have to overlap when i = j = k.

$$S \rightarrow AC \mid BD$$
$$A \rightarrow aAb \mid \epsilon$$
$$C \rightarrow Cc \mid \epsilon$$
$$D \rightarrow bDc \mid \epsilon$$
$$B \rightarrow Ba \mid \epsilon$$

Push-Down Automata

Pushdown Automata are to CFGs what Finite Automata are to Regular Expressions.

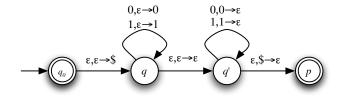
A PDA is an ϵ -NFA with an additional *stack*.

The stack makes it more powerful than an NFA because states can only "store" a fixed amount of information, while the stack is unbounded.

But the stack can only be used in a limited way, by pushing and popping symbols.

PDA

Here is an example PDA that accepts the language $\{ ww^{\mathcal{R}} \mid w \in \Sigma^* \}$ (even-length palindromes):



In this case, the input alphabet is $\{0,1\}$ and the stack alphabet is $\{0,1,\$\}$.

Rule $x, y \rightarrow z$ intuitively means "read input x, replace the y at the top of the stack by z". It applies only if there is a y at the top of the stack!

PDA Formalities

Definition

A pushdown automaton is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where Q, Σ , and Γ are all finite sets, and

- **0***Q*is the set of states,
- **2** Σ is the *input alphabet*,
- **3** Γ is the *stack alphabet*,
- $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \longrightarrow 2^{Q \times \Gamma_{\epsilon}}$ is a transition function,
- **5** $q_0 \in Q$ is the *start state*, and
- $F \subseteq Q$ is the set of *accept states*.

Acceptance by a PDA

Definition

Let $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ be a PDA. An *instantaneous description* (or *ID*) is a snapshot $\iota = (q, w, \alpha)$ of the PDA recording

- the current state $q \in Q$,
- the input that has not yet been read $w\in\Sigma^*$, and
- the complete contents of the stack $\alpha \in \Gamma^*$.

An ID has everything necessary to predict the possible future IDs of the PDA.

Acceptance

IDs evolve over time. $\iota_i \rightsquigarrow \iota_{i+1}$ if the PDA can transform ι_i to ι_{i+1} :

Definition

Define \rightsquigarrow by

$$(q, aw, X\beta) \rightsquigarrow (p, w, \alpha\beta)$$

if $\delta(q, a, X)$ contains (p, α) .

Define $\stackrel{*}{\rightsquigarrow}$ to be the reflexive transitive closure of \rightsquigarrow .

Definition

A string w is accepted if there exists a γ such that $(q_0, w, \epsilon) \stackrel{*}{\leadsto} (p, \epsilon, \gamma)$ and $p \in F$.

$$L(P) = \left\{ w \in \Sigma^* \ \Big| \ \exists p \in F, \gamma \in \Gamma^* \left((q_0, w, \epsilon) \stackrel{*}{\rightsquigarrow} (p, \epsilon, \gamma) \right) \right\}$$

PDA Acceptance Example

Running the previous PDA on input 0110 gives the following computation

 $(q_0, 0110, \epsilon) \rightsquigarrow (q, 0110, \$) \rightsquigarrow (q, 110, 0\$) \rightsquigarrow (q, 10, 10\$) \rightsquigarrow (q', 10, 10\$) \rightsquigarrow (q', 0, 0\$) \rightsquigarrow (q', \epsilon, \$) \rightsquigarrow (p, \epsilon, \epsilon)$

Theorem

 $L \subseteq \Sigma^*$ is context-free iff some PDA recognises L.

-The End-