
COMP4141 Theory of Computation
Lecture 5 Context-Free Languages

Ron van der Meyden

CSE, UNSW

Revision: Date: 2014/03/17

(Credits: David Dill, Thomas Wilke, Kai Engelhardt, Peter Höfner,
Rob van Glabbeek)

Context-Free Languages

Regular languages have many wonderful properties, but not all
languages are regular. (E.g.

{
aibi | i ∈ N

}
, arithmetic

expressions)

Next, we’ll study a more powerful class of languages, the
context-free languages (CFLs).

CFLs were identified in the 1950’s by linguist Noam Chomsky, as a
natural place in a hierarchy of languages, which included the
regular languages.

Formal Definition of Context-Free Grammars

Definition

A context-free grammar (CFG) is a 4-tuple (N,Σ,P,S), where

1 N is a finite set of variables,

2 Σ is a finite set, disjoint from N, of terminals,

3 P ⊆ N × (N ∪ Σ)∗ is a finite set of rules, and

4 S ∈ N is the start variable.

Variables are often called non-terminal symbols, terminals are often
called terminal symbols, rules also go under the name productions,
and the start variable is also known as the sentence symbol.

Notational Conventions for CFGs

Typically,

upper case letters A,B, S , . . . are used for variables,

a, b, c, 0, 1 . . . for terminals,

w , x , y , z for strings of terminals (Σ∗), and

α, β, γ, . . . for strings of terminals and/or variables ((N ∪Σ)∗).

Productions are written as in

A→ aBc

Here

A is the left-hand side (LHS), also called the head, and

aBc is the right-hand side (RHS), also called the body.

Several productions with common heads can be combined:

A→ a | Aa | bAb

Example

G = ({S}, {0, 1}, {S → ε | 0S1},S)

Derivations

The language of a given CFG, G = (N,Σ,P, S), can be
characterized using the concept of a derivation.

Definition

Derivation step: αAβ ⇒G αγβ whenever A→ γ ∈ P.

Define ⇒∗G to be the reflexive transitive closure of ⇒G . That is,
α⇒∗G β if we can get from α to β in zero or more steps.

The language of G is

L(G) = { w ∈ Σ∗ | S ⇒∗G w }

Example

If
G = ({S}, {0, 1}, {S → ε | 0S1},S)

then

S ⇒∗G 0011 because S ⇒G 0S1⇒G 00S11⇒G 0011.

Apparently, L(G) =
{
0i1i | i ∈ N

}

Example: Grammar for Regular Expressions

Suppose Σ = {a, b}.

S → ∅ | ε | a | b | S ∪ S | S ◦ S | S∗ | (S)

(a ∪ b ◦ a)∗ is a regular expression because
S ⇒G S∗ ⇒G (S)∗ ⇒G (S ∪ S)∗ ⇒G (S ∪ S ◦ S)∗ ⇒G

(a ∪ S ◦ S)∗ ⇒G (a ∪ S ◦ a)∗ ⇒G (a ∪ b ◦ a)∗.

Parse Trees

A parse tree is a tree that shows how to
derive a string from a non-terminal.

The children of a node in the tree
correspond to the body of a production
that has the node as head.

For A→ ε, there is a single child, ε.

Parse tree for (a ∪ b ◦ a)∗:

S

S *

S)(

⋃ SS

∘ SSa

b a

Yield of a Parse Tree

The concatenation of the symbols at the leaves of a parse tree is
called the yield of the parse tree.

The yield can always be derived from the symbol at the root of the
tree. If the root is S and the yield is x ∈ Σ∗, then x ∈ L(G).

Leftmost Derivations

There are many ways to extract a derivation from a parse tree.
If we put a restriction on how the derivation is done, we can get
the derivation uniquely.

Definition

A derivation of a string w in a grammar G is a leftmost derivation
if at every step the leftmost remaining variable is the one replaced.

Example

S ⇒G S∗ ⇒G (S)∗ ⇒G (S ∪ S)∗ ⇒G (a ∪ S)∗ ⇒G

(a ∪ S ◦ S)∗ ⇒G (a ∪ b ◦ S)∗ ⇒G (a ∪ b ◦ a)∗

where we have underlined the leftmost variable at each step

Ambiguity

A CFG is ambiguous if there is more than one leftmost derivation
for the same string.

Equivalently: more than one parse tree for the same string.

Ambiguity often causes problems:

With interpretation.

With parsing.

Is our grammar for regular expressions ambiguous?
Yes, but it needn’t be.

Example: Unambiguous Grammar for REΣ

GREΣ
= ({U,C ,K ,T},Σ ∪ {ε, ∅,∪, ◦, ∗, (,)},P,U) where the rules

P are:

U → U ∪ C | C

C → C ◦ K | K

K → T ∗ | T

T → (U) | ∅ | ε | a | b | . . .

(a ∪ b ◦ a)∗ is a regular expression according to GRE{a,b} because
U ⇒G C ⇒G K ⇒G T ∗ ⇒G (U)∗ ⇒G (U ∪C)∗ ⇒G (C ∪C)∗ ⇒G

(K ∪C)∗ ⇒G (T ∪C)∗ ⇒G (a∪C)∗ ⇒G (a∪C ◦K)∗ ⇒G (a∪K ◦
K)∗ ⇒G (a∪T ◦K)∗ ⇒G (a∪b◦K)∗ ⇒G (a∪b◦T)∗ ⇒G (a∪b◦a)∗.

Inherently Ambiguous CFLs

Some languages are context-free but don’t have unambiguous
CFGs. {

aibjck | i = j ∨ j = k
}

Intuition: This is the union of two unambiguous grammars, but
they have to overlap when i = j = k .

S → AC | BD

A→ aAb | ε
C → Cc | ε
D → bDc | ε
B → Ba | ε

Push-Down Automata

Pushdown Automata are to CFGs what Finite Automata are to
Regular Expressions.

A PDA is an ε-NFA with an additional stack.

The stack makes it more powerful than an NFA because states can
only “store” a fixed amount of information, while the stack is
unbounded.

But the stack can only be used in a limited way, by pushing and
popping symbols.

PDA

Here is an example PDA that accepts the language{
wwR | w ∈ Σ∗

}
(even-length palindromes):

qq0
ε,ε→$

0,ε→0
1,ε→1

q'
ε,ε→ε

0,0→ε
1,1→ε

ε,$→ε
p

In this case, the input alphabet is {0, 1} and the stack alphabet is
{0, 1, $}.

Rule x , y → z intuitively means “read input x , replace the y at the
top of the stack by z”. It applies only if there is a y at the top of
the stack!

PDA Formalities

Definition

A pushdown automaton is a 6-tuple (Q,Σ, Γ, δ, q0,F) where Q, Σ,
and Γ are all finite sets, and

1 Q is the set of states,

2 Σ is the input alphabet,

3 Γ is the stack alphabet,

4 δ : Q × Σε × Γε −→ 2Q×Γε is a transition function,

5 q0 ∈ Q is the start state, and

6 F ⊆ Q is the set of accept states.

Acceptance by a PDA

Definition

Let P = (Q,Σ, Γ, δ, q0,F) be a PDA. An instantaneous description
(or ID) is a snapshot ι = (q,w , α) of the PDA recording

the current state q ∈ Q,

the input that has not yet been read w ∈ Σ∗, and

the complete contents of the stack α ∈ Γ∗.

An ID has everything necessary to predict the possible future IDs
of the PDA.

Acceptance
IDs evolve over time. ιi ιi+1 if the PDA can transform ιi to
ιi+1:

Definition

Define by
(q, aw ,Xβ) (p,w , αβ)

if δ(q, a,X) contains (p, α).

Define
∗
 to be the reflexive transitive closure of .

Definition

A string w is accepted if there exists a γ such that
(q0,w , ε)

∗
 (p, ε, γ) and p ∈ F .

L(P) =
{

w ∈ Σ∗
∣∣∣ ∃p ∈ F , γ ∈ Γ∗

(
(q0,w , ε)

∗
 (p, ε, γ)

) }

PDA Acceptance Example

Running the previous PDA on input 0110 gives the following
computation

(q0, 0110, ε) (q, 0110, $) (q, 110, 0$) (q, 10, 10$)
(q′, 10, 10$) (q′, 0, 0$) (q′, ε, $) (p, ε, ε)

Theorem

L ⊆ Σ∗ is context-free iff some PDA recognises L.

—The End—

	Contex-Free Languages
	Intro

	Contex-Free Grammars
	Intro

	PDAs
	Intro

	Equivalence of CFGs and PDAs
	Intro

