
COMP4141 Theory of Computation
Lecture 6 CFLs (cont.) & Grammars

Ron van der Meyden

CSE, UNSW

Revision: 2014/03/19

(Credits: David Dill, Thomas Wilke, Kai Engelhardt, Peter Höfner,
Rob van Glabbeek)

Theorem

L ⊆ Σ∗ is context-free iff some PDA recognises L.

CFG −→ PDA

Proof idea: Let the PDA guess a derivation, then match what it
derived against the input word.

Refinement of the idea: Let the PDA guess a derivation while
matching terminals from the input word.

CFG −→ PDA

qq0
ε,ε→S$

ε,A→w
a,a→ε

ε,$→ε
p

for every rule A→ w and terminal a. The non-terminal handling
transitions are abbreviations for detours through auxiliary states to
build up w on the stack one symbol at a time.
The details are in [Sipser2006].

PDA −→ CFG

Start with a PDA P = (Q,Σ, Γ, δ, q0,F).

Design a CFG G = (V ,Σ,R,S) with a non-terminal Apq for each
pair (p, q) ∈ Q × Q with the idea that Ap,q generates all those
strings that take P from state p with an empty stack to state q
with an empty stack:

V = { Apq | p, q ∈ Q }
S = Aq0qaccept

(This also means that strings generated by Apq take P from state
p with stack content γ to state q with stack content γ without
ever dipping into γ.)

PDA −→ CFG, cont.

First we transform the machine into one that

1 has a single accept state F = {qaccept}
2 empties its stack before terminating

3 has only transitions that either push or pop a symbol from the
stack (but not both in a single transition, nor transitions that
neither push nor pop.)

PDA −→ CFG, cont.
R consists of the following rules:

Apq → aArsb if p
a,ε→t−→ r and s

b,t→ε−→ q
for some p, q, r , s ∈ Q, t ∈ Γ and a, b ∈ Σε

Apq → AprArq, for p, q, r ∈ Q

App → ε, for p ∈ Q

Lemma

If Apq ⇒∗G x ∈ Σ∗ then x can take P from state p with an empty
stack to state q with an empty stack.

Lemma

If x ∈ Σ∗ can take P from state p with an empty stack to state q
with an empty stack then Apq ⇒∗G x.

The lemmas are proven in [Sipser2006].

PDA −→ CFG, cont.
R consists of the following rules:

Apq → aArsb if p
a,ε→t−→ r and s

b,t→ε−→ q
for some p, q, r , s ∈ Q, t ∈ Γ and a, b ∈ Σε

Apq → AprArq, for p, q, r ∈ Q

App → ε, for p ∈ Q

Lemma

If Apq ⇒∗G x ∈ Σ∗ then x can take P from state p with an empty
stack to state q with an empty stack.

Lemma

If x ∈ Σ∗ can take P from state p with an empty stack to state q
with an empty stack then Apq ⇒∗G x.

The lemmas are proven in [Sipser2006].

How to pump CFLs

Similar to regular languages, CFLs can be pumped.

Theorem (Pumping Lemma)

If L ⊆ Σ∗ is context-free then there exists p ∈ N (the pumping
length) where, if w ∈ L with |w | ≥ p, then w may be split into five
pieces, w = uvxyz, satisfying the following conditions:

1 uv ixy iz ∈ L, for all i ∈ N,

2 |vy | > 0, and

3 |vxy | ≤ p.

Proof idea only.

In large enough derivation trees we must necessarily find paths
from the root to a terminal symbol that are longer than the
number of non-terminals. So there must be a repetition. Take the
last repetition, i.e., two occurrence of the same non-terminal. To
pump down, cut off the subtree rooted at the first occurrence and
insert the subtree rooted at the second occurrence. To pump up,
cut at the second occurrence and insert the subtree rooted at the
first occurrence.

Example

Let L(G1) =
{

aibic i | i > 0
}

.

Assume that L(G1) is a CFL, that is, there is a CFG G with
L(G) = L(G1). We use the pumping lemma to derive a
contradiction.

Let p be G ’s pumping length. Consider w = apbpcp and let
w = uvxyz satisfy the conditions of the pumping lemma.

If vxy is in a∗b∗ then uxz is not in L(G1) because, by condition 2
vy contains at least one symbol, so uxz has either fewer than p
copies of a or b but exactly c copies of p.
If vxy is in b∗c∗ we reason analogously.

Due to condition 3 of the pumping lemma there are no other
cases. Each case lead to a contradiction. Thus L(G1) cannot be
context-free.

Playing games

Exploits of the pumping lemma can be seen as a game played
against an imaginary adversary:

1 We pick L ⊆ Σ∗.

2 The adversary picks a pumping length p > 0.

3 We pick a word w ∈ L with |w | ≥ p.

4 The adversary partitions w into uvxyz such that |vxy | ≤ p
and vy 6= ε.

5 We win if we can find an i ∈ N such that uv ixy iz /∈ L. Our
profit is a proof of L not being context-free.

For playing some instances of the game, check out JFLAP.

L = { ww | w ∈ {0, 1}∗ } is not a CFL

This may surprise some because L =
{

wwR | w ∈ {0, 1}∗
}

is a
CFL. (Proof eg via the CFG S → 0S0 | 1S1 | ε.)

Let p be the pumping length for L.

As a rule of thumb, we suggest words w based on p such that only
a small number of cases for partitioning w into uvxyz satisfying
|vxy | ≤ p and vy 6= ε emerge. This is often achieved by making all
the different regions in w sufficiently long such that vxy must be
located in at most two of them.

Sipser discusses why 0p10p1 does not work. We note that it
doesn’t follow the rule of thumb because vxy could range over
three of the four regions, e.g., 0p10p.

L = { ww | w ∈ {0, 1}∗ } is not a CFL

This may surprise some because L =
{

wwR | w ∈ {0, 1}∗
}

is a
CFL. (Proof eg via the CFG S → 0S0 | 1S1 | ε.)

Let p be the pumping length for L.

As a rule of thumb, we suggest words w based on p such that only
a small number of cases for partitioning w into uvxyz satisfying
|vxy | ≤ p and vy 6= ε emerge. This is often achieved by making all
the different regions in w sufficiently long such that vxy must be
located in at most two of them.

Sipser discusses why 0p10p1 does not work. We note that it
doesn’t follow the rule of thumb because vxy could range over
three of the four regions, e.g., 0p10p.

L = { ww | w ∈ {0, 1}∗ } is not a CFL

This may surprise some because L =
{

wwR | w ∈ {0, 1}∗
}

is a
CFL. (Proof eg via the CFG S → 0S0 | 1S1 | ε.)

Let p be the pumping length for L.

As a rule of thumb, we suggest words w based on p such that only
a small number of cases for partitioning w into uvxyz satisfying
|vxy | ≤ p and vy 6= ε emerge. This is often achieved by making all
the different regions in w sufficiently long such that vxy must be
located in at most two of them.

Sipser discusses why 0p10p1 does not work. We note that it
doesn’t follow the rule of thumb because vxy could range over
three of the four regions, e.g., 0p10p.

L = { ww | w ∈ {0, 1}∗ } is not a CFL cont.

Instead, we (and Sipser, and everybody else) pick w = 0p1p0p1p.
Let uvxyz = w such that |vxy | ≤ p and vy 6= ε. As in the failed
attempt, w contains four regions, but this time vxy can range over
at most two of them.

If vxy is located in a single one of the regions, i.e., vxy ∈ 0∗ ∪ 1∗

pumping either way takes us out of L.

L = { ww | w ∈ {0, 1}∗ } is not a CFL cont.

Otherwise, if vxy is stretches across two adjacent regions we
distinguish three cases:

1 u ∈ 0∗ and vxy ∈ 0∗1∗, that is, vxy doesn’t straddle the
midpoint of w but is contained in the first half of w .
Pumping down leads to a word the midpoint of which is
located inside the third region, 0p. So the left half of uxz ends
in a 0 but the right half ends in a 1. Thus uxz /∈ L.

2 u ∈ 0p1p0∗ and vxy ∈ 0∗1∗, that is, vxy is contained in the
second half of w . This case is similar to the previous one.

3 vxy ∈ 1∗0∗, that is, vxy straddles the midpoint of w .
Pumping down leads to uxz = 0p1i0j1p for some i , j ≤ p that
cannot both be p. Again, uxz /∈ L.

Theorem

CFLs are closed under union.

Proof.

Let L1, L2 ⊆ Σ∗ be context-free.

For i = 1, 2 let Gi = (Vi ,Σ,Pi , Si) be a CFG such that L(Gi) = Li

such that w.l.o.g. V1 ∩ V2 = ∅.

Consider G = (V1 ∪ V2 ∪ {S},Σ,P,S) for some fresh non-terminal
S /∈ V1 ∪ V2 ∪ Σ where

P = P1 ∪ P2 ∪ {S → S1 | S2}

This grammar clearly generates L1 ∪ L2.

Theorem

CFLs are closed under concatenation.

Proof.

With L1, L2,G1,G2,G as in the previous proof, except for

P = P1 ∪ P2 ∪ {S → S1S2}

This grammar clearly generates L1L2.

Theorem

CFLs are closed under Kleene star (∗).

Proof: exercise.

Theorem

CFLs are not closed under intersection.

A counter example suffices. We introduce two languages

L1 =
{

aibic j | i > 0 ∧ j > 0
}

L2 =
{

ajbic i | i > 0 ∧ j > 0
}

which are context-free but whose intersection

L1 ∩ L2 =
{

aibic i | i > 0
}

is not as we’ve shown. It remains to be shown that the Li are
indeed CFLs.

Consider the two CFGs

G1 : S → AB G2 : S → AB

A→ aAb | ab A→ aA | a

B → cB | c B → bBc | bc

In G1, the non-terminal A generates all strings of the form aibi ,
and B generates all strings of cs.

In G2, the non-terminal B generates all strings of the form bic i ,
and A generates all strings of as.

Complementation

That CFLs are not closed under complementation follows from de
Morgan’s laws:

L1 ∩ L2 = L1 ∪ L2 .

	Equivalence of CFGs and PDAs
	Intro

	Pumping Lemma
	Intro

	Pumping Lemma Apps
	Game
	Examples

	Closure Properties of CFLs
	intro

