
COMP4141 Theory of Computation
Lecture 7 Grammars

Ron van der Meyden

CSE, UNSW

Revision: 2016/3/24

(Credits: David Dill, Thomas Wilke, Kai Engelhardt, Peter Höfner,
Rob van Glabbeek)

Grammars
CFGs are special cases of (Chomsky) Grammars.

Definition (Chomsky Grammar)

A Chomsky Grammar is a 4-tuple G = (N,Σ,P,S) where N, Σ,
and S are as for CFGs, but the finite set of productions merely
satisfies

P ⊆ (N ∪ Σ)∗N(N ∪ Σ)∗ × (N ∪ Σ)∗ .

Write

α⇒G β if there exist α1, β1, γ, δ ∈ (N ∪ Σ)∗ such that
α = γα1δ, β = γβ1δ, and α1 → β1 ∈ P.

α⇒n
G β if there exist α0, . . . , αn such that α0 = α, αn = β,

and αi ⇒G αi+1 for i < n.

α⇒∗G β if there exists n ∈ N such that α⇒n
G β.

L(G) = { w ∈ Σ∗ | S ⇒∗G w } —the language generated by G .

Definition (Chomsky Hierarchy)

A grammar G = (N,Σ,P, S) is of type

0 (or recursively enumerable) in the general case.

1 (or context-sensitive), if |α| ≤ |β| for all productions
α→ β ∈ P, except that we allow S → ε provided that also
there is no occurrence of S on the RHS of any rule.

2 (or context-free), if all productions have the form A→ α.

3 (or right-linear), if all productions are of the form A→ w or
A→ wB, where w ∈ Σ and B ∈ N.

The language L ⊆ Σ∗ is said to be of of type i if there exists a
grammar G of the respective type with L = L(G).

Examples

G1 : S → abc | aAbc G3 : S → aB | bA
Ab→ bA A→ a | aS | bAA
Ac→ Bbcc B → b | bS | aBB
bB → Bb

aB → aaA | aa G4 : S → aA | a
A→ aA | a | bB

G2 : S → 0 | 1 | (S + S) | (S ∗ S) B → aB | bA | b

G1 is type 1, G2 and G3 are type 2, and G4 is type 3.

S ⇒G1 aAbc⇒G1 abAc⇒G1 abBbcc⇒G1 aBbbcc⇒G1 aabbcc

S ⇒G2 (S + S)⇒G2 ((S ∗ S) + S)⇒G2 ((S ∗ S) + 1)⇒G2

((0 ∗ S) + 1)⇒G2 ((0 ∗ 1) + 1)⇒G2

S ⇒G3 aB ⇒G3 abS ⇒G3 abbA⇒G3 abbaS ⇒G3 abbaaB ⇒G3

abbaab

S ⇒G4 aA⇒G4 aaA⇒G4 aabB ⇒G4 aabbA⇒G4 aabba

An equivalent definition for context sensitive grammars, that
makes it easier to see where the name comes from:

G is context sensitive if all productions have the form
αBγ → αδγ, where B is a nonterminal and δ 6= ε, except that we
allow S → ε, provided there is no S on the RHS of any rule.

That is, ability to rewrite B depends on the surrounding context.

Note: allowing δ = ε produces a class equivalent to type 0
grammars! The nasty exception clause here and above is just to
enable ε to be in the language in spite of the δ 6= ε requirement.
(Some authors just say ε cannot be in the language to get rid of
this. Chomsky had no exception but multiple start strings rather
than a single start symbol.)

Fundamental Questions

For grammars of type i ,

what is their expressive power?

is there a corresponding automata model?

are there simpler yet equally powerful subclasses, so called
normal forms?

can we decide:

the word problem: given G and w , is w ∈ L(G)?
the emptiness problem: given G , is L(G) = ∅?
the equivalence problem: given G1 and G2, is L(G1) = L(G2)?

Some Answers

Theorem

L is context-free iff L = L(A) for some PDA A.

Theorem

L is right-linear iff L is regular.

Proof.

“⇒:” Let L be right-linear. We translate a right-linear grammar
G = (N,Σ,P, S) with L = L(G) to an NFA with word transitions
AG = (N ∪ {Ω},Σ, S , δ, {Ω}) where

B ∈ δ(A,w) iff A→ wB ∈ P , and

Ω ∈ δ(A,w) = iff A→ w ∈ P .

It follows that L(AG) = L(G).

Proof.

“⇐:” Let L be regular. Let M = (Q,Σ, δ, q0,F) be an NFA with
L = L(M) and, w.l.o.g., no transition to q0. Define
GM = (Q,Σ,P, q0) by

A→ aB ∈ P iff B ∈ δ(A, a) ,

A→ a ∈ P iff δ(A, a) ∩ F 6= ∅ , and

q0 → ε ∈ P iff q0 ∈ F .

It follows that L(GM) = L(M).

Deciding emptiness of a regular language

How to decide emptiness of a regular language L depends on its
representation, of which we’ve met a few.

NFA: when given as L(A) of an NFA (Q,Σ, δ, q0,F) (or DFA,
ε-NFA) is an exercise in graph reachability: Is there a final state
that can be reached from the initial state?

This can be done by a depth-first search in time linear in the
number of edges and vertices. (But note there could be |Q|2
edges.)

Deciding emptiness of a regular language (cont.)

REΣ: When L is given as L(R) of a regular expression R then we
can abstract inductively as follows:

Base: L(∅) = ∅, L(ε) 6= ∅, and L(a) 6= ∅.

Induction:

L(R1 ∪ R2) = ∅ iff L(R1) = L(R2) = ∅.

L(R1 ◦ R2) = ∅ iff L(R1) = ∅ or L(R2) = ∅.

L(R∗1) 6= ∅.

L((R1)) = ∅ iff L(R1) = ∅.

This implies that L(R) = ∅ can be decided in O(|R|) time.

The word problem for regular languages

DFA: easy, just feed the word to the automaton.

NFA: marking algorithm: on input w = a1 . . . a|w |
1 Set of marks M := {q0}.
2 For i = 1 to |w | do

M :=
⋃

q∈M δ(q, ai)

3 Return whether F ∩M 6= ∅.
Others: translate to an equivalent DFA. See above.

The equivalence problem for regular languages

DFAs: for DFAs A1 and A2 construct an DFA recognising the
symmetric set difference,

(L(A1) ∩ L(A2)) ∪ (L(A2) ∩ L(A1))

by employing the standard constructions for complement and
union. Then check emptiness.

Others: translate to equivalent DFAs. See above.

Emptiness of CFLs

Given a CFG G = (V ,Σ,P,S) the emptiness problem can be
decided as follows:

1 Mark the terminals and ε, as generating

2 Mark as generating all those non-terminals that have a
production with only generating symbols in the RHS.

3 Repeat step 2 until nothing new is marked generating.

4 Check whether the start symbol is marked as generating.

Chomsky normal form

For many of the remaining questions, it is convenient to introduce
a particularly simple class of CFGs that is still as powerful as CFGs
in general.

Definition

A context free (type 2) grammar is in Chomsky normal form if
every production is of one of the forms

S → ε, or

A→ BC where B and C are not S , or

A→ a.

Theorem

Any CFL is generated by a CFG in Chomsky normal form.

Proof.

Let G = (V ,Σ,P,S) be a CFG.

Step 0: Define an equivalent CFG G0 = (V ∪ {S0},Σ,P0,S0) with a fresh start
variable S0 and the production S0 → S . We also remove all productions of the
form A → ε and patch this up by introducing new productions for every
occurrence of A in a body with that occurrence removed.

(E.g., A → ε | aAbA becomes A → ab | abA | aAb | aAbA.)

Productions B → A are replaced by B → ε unless that is one we had removed
earlier.

Repeat until ε occurs at most in S0 → ε.

Step 1: Define an equivalent CFG G1 = (V1,Σ,P1,S0) with fresh
non-terminals for terminals V1 = V ∪ {S0} ∪ { Xa | a ∈ Σ }. Here
P1 is derived from P0 by replacing all occurrences of a terminal
a ∈ Σ in the body of a production by the corresponding
non-terminal Xa and then adding productions Xa → a.

Proof cont.

Step 2: Define an equivalent CFG G2 = (V1,Σ,P2, S0). To generate P2 from
P1, eliminate productions of the form A → B by

1 determining all derivations A1 ⇒G1 . . .⇒G1 Ak ⇒G1 α /∈ V1 not
containing repetitions of non-terminals,

2 drop all productions A → B, and

3 introduce A1 → α for each of the derivations determined before.

Step 3: Define an equivalent CFG G3 = (V3,Σ,P3,S0). To
generate P3 from P2, replace all productions A→ B1 . . .Bn with
n > 2 by A→ B1C1, C1 → B2C2, . . . , Cn−2 → Bn−1Bn for fresh
non-terminals Ci . (These are distinct for each such
production.)

The word problem for CFLs

The word problem for CFGs is decidable.
More precisely we’ll show that

Theorem

Let G = (V ,Σ,P, S) be a CFG in Chomsky normal form. Then
the CYK-algorithm decides w ∈ L(G) in time O(|w |3) for w ∈ Σ∗.

The CYK-algorithm (for Cocke-Younger-Kasami) works as follows.
Given w = a1 . . . an compute for i , j ∈ {1, . . . , n} the set
Nij = { A ∈ V | A⇒∗G ai . . . aj } of non-terminals generating
ai . . . aj . Then

w ∈ L(G) iff S ∈ V1n .

The details are not in [Sipser2006].

CYK-Algorithm

for CFG G = (V ,Σ,P, S) in Chomsky normal form.
“On input w = a1 . . . an

1 for i , j := 1 to n do

Ni ,j :=

{
{ A ∈ V | A→ ai ∈ P } if i = j

∅ otherwise

2 for d := 1 to n − 1 and i := 1 to n − d do
1 j := i + d
2 for k := i to j − 1 do

Ni,j := Ni,j ∪
{

A ∈ V

∣∣∣∣ ∃B,C (A→ BC ∈ P ∧
B ∈ Ni,k ∧ C ∈ Nk+1,j

) }
3 Return whether S ∈ N1,n.

Preview of undecidable CFL problems
Later we’ll develop a theory that allows us to prove rigorously that
there are problems that cannot be solved by any algorithm that
can be implemented as a computer program.
Such problems are called undecidable.
Some simple decision problems in the realm of CFLs are
undecidable:

Is a given CFG ambiguous?

Is any CFG for a given CFL necessarily ambiguous?

Is the intersection of two given CFLs empty?

Are two given CFGs/PDAs equivalent?

Does a given CFG generate all strings Σ∗?

—The End—

	CFLs
	Intro

