COMP4141 Theory of Computation Lecture 7 Grammars

Ron van der Meyden

CSE, UNSW

Revision: 2016/3/24

(Credits: David Dill, Thomas Wilke, Kai Engelhardt, Peter Höfner, Rob van Glabbeek)

Grammars

CFGs are special cases of (Chomsky) Grammars.

Definition (Chomsky Grammar)

A Chomsky Grammar is a 4-tuple $G = (N, \Sigma, P, S)$ where N, Σ , and S are as for CFGs, but the finite set of *productions* merely satisfies

 $P \subseteq (N \cup \Sigma)^* N(N \cup \Sigma)^* \times (N \cup \Sigma)^*$.

Write

- $\alpha \Rightarrow_G \beta$ if there exist $\alpha_1, \beta_1, \gamma, \delta \in (N \cup \Sigma)^*$ such that $\alpha = \gamma \alpha_1 \delta$, $\beta = \gamma \beta_1 \delta$, and $\alpha_1 \to \beta_1 \in P$.
- $\alpha \Rightarrow_G^n \beta$ if there exist $\alpha_0, \ldots, \alpha_n$ such that $\alpha_0 = \alpha$, $\alpha_n = \beta$, and $\alpha_i \Rightarrow_G \alpha_{i+1}$ for i < n.

• $\alpha \Rightarrow^*_G \beta$ if there exists $n \in \mathbb{N}$ such that $\alpha \Rightarrow^n_G \beta$. $L(G) = \{ w \in \Sigma^* \mid S \Rightarrow^*_G w \}$ —the language generated by G.

Definition (Chomsky Hierarchy)

A grammar $G = (N, \Sigma, P, S)$ is of type

- **0** (or *recursively enumerable*) in the general case.
- 1 (or *context-sensitive*), if $|\alpha| \le |\beta|$ for all productions $\alpha \to \beta \in P$, except that we allow $S \to \epsilon$ provided that also there is no occurrence of S on the RHS of any rule.
- **2** (or *context-free*), if all productions have the form $A \rightarrow \alpha$.
- **3** (or *right-linear*), if all productions are of the form $A \rightarrow w$ or $A \rightarrow wB$, where $w \in \Sigma$ and $B \in N$.

The language $L \subseteq \Sigma^*$ is said to be of *of type i* if there exists a grammar *G* of the respective type with L = L(G).

Examples

$\mathit{G}_1: \mathcal{S} ightarrow extsf{abc} \mid extsf{a}\mathcal{A} extsf{bc}$	${\it G}_3: {\it S} ightarrow {\tt a} {\it B} \mid {\tt b} {\it A}$
Ab $ ightarrow$ b A	$A ightarrow extbf{a} \mid extbf{a}S \mid extbf{b}AA$
$A extsf{c} o B extsf{bcc}$	$B ightarrow { t b} \mid { t b}S \mid { t a}BB$
b B o Bb	
$\mathtt{a}B o \mathtt{a}\mathtt{a}A \mid \mathtt{a}\mathtt{a}$	${\it G}_4:S ightarrow { t a} {\it A}\mid { t a}$
	$A ightarrow \mathtt{a} A \mid \mathtt{a} \mid \mathtt{b} B$
$\mathit{G}_2: \mathit{S} \rightarrow 0 \mid 1 \mid (\mathit{S} + \mathit{S}) \mid (\mathit{S} \ast \mathit{S})$	$B ightarrow \mathtt{a} B \mid \mathtt{b} A \mid \mathtt{b}$
G_1 is type 1, G_2 and G_3 are type 2, and G_4 is type 3.	

 $S \Rightarrow_{G_1} aAbc \Rightarrow_{G_1} abAc \Rightarrow_{G_1} abBbcc \Rightarrow_{G_1} aBbbcc \Rightarrow_{G_1} abbcc$

$$\begin{split} S \Rightarrow_{G_2} (S+S) \Rightarrow_{G_2} ((S*S)+S) \Rightarrow_{G_2} ((S*S)+1) \Rightarrow_{G_2} \\ ((0*S)+1) \Rightarrow_{G_2} ((0*1)+1) \Rightarrow_{G_2} \end{split}$$

 $S\Rightarrow_{G_3} aB\Rightarrow_{G_3} abS\Rightarrow_{G_3} abbA\Rightarrow_{G_3} abbaS\Rightarrow_{G_3} abbaaB\Rightarrow_{G_3} abbaab$

 $S \Rightarrow_{G_4} aA \Rightarrow_{G_4} aaA \Rightarrow_{G_4} aabB \Rightarrow_{G_4} aabbA \Rightarrow_{G_4} aabba$

An equivalent definition for context sensitive grammars, that makes it easier to see where the name comes from:

G is context sensitive if all productions have the form $\alpha B\gamma \rightarrow \alpha \delta\gamma$, where *B* is a nonterminal and $\delta \neq \epsilon$, except that we allow $S \rightarrow \epsilon$, provided there is no *S* on the RHS of any rule.

That is, ability to rewrite B depends on the surrounding context.

Note: allowing $\delta = \epsilon$ produces a class equivalent to type 0 grammars! The nasty exception clause here and above is just to enable ϵ to be in the language in spite of the $\delta \neq \epsilon$ requirement. (Some authors just say ϵ cannot be in the language to get rid of this. Chomsky had no exception but multiple start *strings* rather than a single start symbol.)

Fundamental Questions

For grammars of type i,

- what is their expressive power?
- is there a corresponding automata model?
- are there simpler yet equally powerful subclasses, so called *normal forms*?
- can we decide:
 - the word problem: given G and w, is $w \in L(G)$?
 - the emptiness problem: given G, is $L(G) = \emptyset$?
 - the equivalence problem: given G_1 and G_2 , is $L(G_1) = L(G_2)$?

Some Answers

Theorem

L is context-free iff L = L(A) for some PDA A.

Theorem

L is right-linear iff L is regular.

Proof.

" \Rightarrow :" Let *L* be right-linear. We translate a right-linear grammar $G = (N, \Sigma, P, S)$ with L = L(G) to an NFA with word transitions $\mathcal{A}_G = (N \cup {\Omega}, \Sigma, S, \delta, {\Omega})$ where

$$B \in \delta(A, w)$$
 iff $A o wB \in P$, and $\Omega \in \delta(A, w) =$ iff $A o w \in P$.

It follows that $L(\mathcal{A}_G) = L(G)$.

Proof.

" \Leftarrow :" Let *L* be regular. Let $M = (Q, \Sigma, \delta, q_0, F)$ be an NFA with L = L(M) and, w.l.o.g., no transition to q_0 . Define $G_M = (Q, \Sigma, P, q_0)$ by

$$egin{array}{ll} A
ightarrow aB \in P & ext{iff} & B \in \delta(A,a) \ , \ A
ightarrow a \in P & ext{iff} & \delta(A,a) \cap F
eq \emptyset \ , ext{ and} \ q_0
ightarrow \epsilon \in P & ext{iff} & q_0 \in F \ . \end{array}$$

It follows that $L(G_M) = L(M)$.

Deciding emptiness of a regular language

How to decide emptiness of a regular language L depends on its representation, of which we've met a few.

NFA: when given as L(A) of an NFA $(Q, \Sigma, \delta, q_0, F)$ (or DFA, ϵ -NFA) is an exercise in graph reachability: Is there a final state that can be reached from the initial state?

This can be done by a depth-first search in time linear in the number of edges and vertices. (But note there could be $|Q|^2$ edges.)

Deciding emptiness of a regular language (cont.)

RE_{Σ}: When *L* is given as *L*(*R*) of a regular expression *R* then we can *abstract* inductively as follows:

Base: $L(\emptyset) = \emptyset$, $L(\epsilon) \neq \emptyset$, and $L(a) \neq \emptyset$.

Induction:

 $L(R_1 \cup R_2) = \emptyset \text{ iff } L(R_1) = L(R_2) = \emptyset.$ $L(R_1 \circ R_2) = \emptyset \text{ iff } L(R_1) = \emptyset \text{ or } L(R_2) = \emptyset.$ $L(R_1^*) \neq \emptyset.$ $L((R_1)) = \emptyset \text{ iff } L(R_1) = \emptyset.$

This implies that $L(R) = \emptyset$ can be decided in O(|R|) time.

The word problem for regular languages

DFA: easy, just feed the word to the automaton.

NFA: marking algorithm: on input $w = a_1 \dots a_{|w|}$

- **1** Set of marks $M := \{q_0\}$.
- **2** For i = 1 to |w| do $M := \bigcup_{q \in M} \delta(q, a_i)$
- **3** Return whether $F \cap M \neq \emptyset$.

Others: translate to an equivalent DFA. See above.

The equivalence problem for regular languages

DFAs: for DFAs A_1 and A_2 construct an DFA recognising the symmetric set difference,

$$(L(A_1)\cap \overline{L(A_2)})\cup (L(A_2)\cap \overline{L(A_1)})$$

by employing the standard constructions for complement and union. Then check emptiness.

Others: translate to equivalent DFAs. See above.

Emptiness of CFLs

Given a CFG $G = (V, \Sigma, P, S)$ the emptiness problem can be decided as follows:

- **1** Mark the terminals and ϵ , as generating
- Mark as generating all those non-terminals that have a production with only generating symbols in the RHS.
- Sepeat step 2 until nothing new is marked generating.
- One Check whether the start symbol is marked as generating.

Chomsky normal form

For many of the remaining questions, it is convenient to introduce a particularly simple class of CFGs that is still as powerful as CFGs in general.

Definition

A context free (type 2) grammar is in *Chomsky normal form* if every production is of one of the forms

- $S \rightarrow \epsilon$, or
- $A \rightarrow BC$ where B and C are not S, or
- $A \rightarrow a$.

Theorem

Any CFL is generated by a CFG in Chomsky normal form.

Proof.

Let $G = (V, \Sigma, P, S)$ be a CFG.

Step 0: Define an equivalent CFG $G_0 = (V \cup \{S_0\}, \Sigma, P_0, S_0)$ with a fresh start variable S_0 and the production $S_0 \rightarrow S$. We also remove all productions of the form $A \rightarrow \epsilon$ and patch this up by introducing new productions for every occurrence of A in a body with that occurrence removed.

(E.g., $A \rightarrow \epsilon \mid aAbA$ becomes $A \rightarrow ab \mid abA \mid aAb \mid aAbA$.)

Productions $B \to A$ are replaced by $B \to \epsilon$ unless that is one we had removed earlier.

Repeat until ϵ occurs at most in $S_0 \rightarrow \epsilon$.

Step 1: Define an equivalent CFG $G_1 = (V_1, \Sigma, P_1, S_0)$ with fresh non-terminals for terminals $V_1 = V \cup \{S_0\} \cup \{X_a \mid a \in \Sigma\}$. Here P_1 is derived from P_0 by replacing all occurrences of a terminal $a \in \Sigma$ in the body of a production by the corresponding non-terminal X_a and then adding productions $X_a \rightarrow a$.

Proof cont.

Step 2: Define an equivalent CFG $G_2 = (V_1, \Sigma, P_2, S_0)$. To generate P_2 from P_1 , eliminate productions of the form $A \rightarrow B$ by

- Obtaining all derivations A₁ ⇒_{G1} ... ⇒_{G1} A_k ⇒_{G1} α ∉ V₁ not containing repetitions of non-terminals,
- **2** drop all productions $A \rightarrow B$, and
- **(3)** introduce $A_1 \rightarrow \alpha$ for each of the derivations determined before.

Step 3: Define an equivalent CFG $G_3 = (V_3, \Sigma, P_3, S_0)$. To generate P_3 from P_2 , replace all productions $A \to B_1 \dots B_n$ with n > 2 by $A \to B_1C_1$, $C_1 \to B_2C_2$, ..., $C_{n-2} \to B_{n-1}B_n$ for fresh non-terminals C_i . (These are distinct for each such production.)

The word problem for CFLs

The word problem for CFGs is decidable. More precisely we'll show that

Theorem

Let $G = (V, \Sigma, P, S)$ be a CFG in Chomsky normal form. Then the CYK-algorithm decides $w \in L(G)$ in time $O(|w|^3)$ for $w \in \Sigma^*$.

The CYK-algorithm (for Cocke-Younger-Kasami) works as follows. Given $w = a_1 \dots a_n$ compute for $i, j \in \{1, \dots, n\}$ the set $N_{ij} = \{A \in V \mid A \Rightarrow_G^* a_i \dots a_j\}$ of non-terminals generating $a_i \dots a_j$. Then $w \in I(C)$ iff $f \in C \setminus V$

 $w \in L(G)$ iff $S \in V_{1n}$.

The details are not in [Sipser2006].

CYK-Algorithm

for CFG $G = (V, \Sigma, P, S)$ in Chomsky normal form. "On input $w = a_1 \dots a_n$ • for i, j := 1 to n do $N_{i,j} := \begin{cases} \{ A \in V \mid A \to a_i \in P \} & \text{if } i = j \\ \emptyset & \text{otherwise} \end{cases}$ 2 for d := 1 to n - 1 and i := 1 to n - d do **1** i := i + d(a) for k := i to i - 1 do $N_{i,j} := N_{i,j} \cup \left\{ A \in V \mid \exists B, C \left(\begin{array}{c} A \to BC \in P \land \\ B \in N_{i,k} \land C \in N_{k+1,i} \end{array} \right) \right\}$ **③** Return whether $S \in N_{1,n}$.

Preview of undecidable CFL problems

Later we'll develop a theory that allows us to prove rigorously that there are problems that *cannot be solved by any algorithm* that can be implemented as a computer program. Such problems are called *undecidable*. Some simple decision problems in the realm of CFLs are undecidable:

- Is a given CFG ambiguous?
- Is any CFG for a given CFL necessarily ambiguous?
- Is the intersection of two given CFLs empty?
- Are two given CFGs/PDAs equivalent?
- Does a given CFG generate all strings Σ^* ?