COMP4141 Theory of Computation

Lecture 7 Grammars

Ron van der Meyden
CSE, UNSW

Revision: 2016/3/24

(Credits: David Dill, Thomas Wilke, Kai Engelhardt, Peter Hofner,
Rob van Glabbeek)

Grammars
CFGs are special cases of (Chomsky) Grammars.

Definition (Chomsky Grammar)

A Chomsky Grammar is a 4-tuple G = (N, X, P, S) where N, ¥,
and S are as for CFGs, but the finite set of productions merely
satisfies

PC(NUZ)*NINUX)" x (NUX)" .
Write
@ a = [if there exist ai, 81,7, € (N UX)* such that
a = ya10, B =010, and a1 — p1 € P.
@ « = [if there exist a, ..., o, such that o = o, oy = 5,
and a; =¢ «aji1 for i < n.
@ a = 3 if there exists n € N such that o = 3.
L(G)={weX*| S=;w]} —the language generated by G.

Definition (Chomsky Hierarchy)
A grammar G = (N, X, P,S) is of type
0 (or recursively enumerable) in the general case.

1 (or context-sensitive), if |a| < || for all productions
a — (B € P, except that we allow S — € provided that also
there is no occurrence of S on the RHS of any rule.

2 (or context-free), if all productions have the form A — «.

3 (or right-linear), if all productions are of the form A — w or
A — wB, where w € X and B € N.

The language L C ¥* is said to be of of type i if there exists a
grammar G of the respective type with L = L(G).

Examples

G1: S — abc | aAbc G3:S —aB|DbA
Ab — bA A—alaS|DbAA
Ac — Bbcc B—b|bS|aBB
bB — Bb
aB — aaA | aa Gy:S—aA|a
A—aAl|al|bB
G:S—=0|1]|(5+95)]|(5x%S5) B—aB|bA|b

G is type 1, Go and Gj3 are type 2, and Gy is type 3.

S =g, aAbc =, abAc =g, abBbcc =, aBbbcc =, aabbcc

S =G, (5 + 5) =6, ((5 * 5) + 5) =6, ((S * 5) + 1) =G,
((0xS)+1)=¢, (0%1)+1) =g,

S =g, aB =, abS =, abbA =g, abbaS =, abbaaB =g,
abbaab

S =¢, aA =, aaA =g, aabB =, aabbA =g, aabba

An equivalent definition for context sensitive grammars, that
makes it easier to see where the name comes from:

G is context sensitive if all productions have the form
aBvy — adv, where B is a nonterminal and d # ¢, except that we
allow S — ¢, provided there is no S on the RHS of any rule.

That is, ability to rewrite B depends on the surrounding context.

Note: allowing § = € produces a class equivalent to type 0
grammars! The nasty exception clause here and above is just to
enable € to be in the language in spite of the d # € requirement.
(Some authors just say € cannot be in the language to get rid of
this. Chomsky had no exception but multiple start strings rather
than a single start symbol.)

Fundamental Questions

For grammars of type i,
@ what is their expressive power?
@ is there a corresponding automata model?
@ are there simpler yet equally powerful subclasses, so called
normal forms?
@ can we decide:

o the word problem: given G and w, is w € L(G)?
o the emptiness problem: given G, is L(G) = (?
e the equivalence problem: given G; and G, is L(Gy) = L(Gy)?

Some Answers

Theorem
L is context-free iff L = L(A) for some PDA A.

Theorem
L is right-linear iff L is regular.

Proof.

=" Let L be right-linear. We translate a right-linear grammar
G=(N,%,P,S) with L = L(G) to an NFA with word transitions
Ac =(NU{Q}, X, 5,0,{Q}) where

Be A w) iff A-wBeP ,and
Qedé(Aw)= iff A-weP .

It follows that L(Ag) = L(G). O

Proof.
“<:" Let L be regular. Let M = (Q, X, d, qo, F) be an NFA with
L = L(M) and, w.l.0.g., no transition to go. Define
Gv = (Q,X, P, qo) by
A—aBeP iff Bej(Aa),
A—aeP iff §(A,a)NF#0(,and
go—>ec P iff goeF .

It follows that L(Gp) = L(M).

Deciding emptiness of a regular language

How to decide emptiness of a regular language L depends on its
representation, of which we've met a few.

NFA: when given as L(A) of an NFA (Q, X, 6, qo, F) (or DFA,
e-NFA) is an exercise in graph reachability: Is there a final state
that can be reached from the initial state?

This can be done by a depth-first search in time linear in the
number of edges and vertices. (But note there could be |Q|?
edges.)

Deciding emptiness of a regular language (cont.)

REs: When L is given as L(R) of a regular expression R then we
can abstract inductively as follows:

Base: L()) =0, L(c) # (), and L(a) # 0.
Induction:

L(RL U Ry) = 0 iff L(Ry) = L(R,) = 0.
L(Ry o Ry) = 0 iff L(Ry) = 0 or L(R,) = 0.
L(R;) # 0.

L((Ry)) = 0 iff L(Ry) = 0.

This implies that L(R) = () can be decided in O(|R]) time.

The word problem for regular languages

DFA: easy, just feed the word to the automaton.

NFA: marking algorithm: on input w = a;...a)
© Set of marks M := {qo}.
@ Fori=1to|w|do
M= Uqgenm 6(a; ai)
© Return whether F N M £ ().
Others: translate to an equivalent DFA. See above.

The equivalence problem for regular languages

DFAs: for DFAs A; and A; construct an DFA recognising the
symmetric set difference,

(L(A1) N L(A2)) U (L(A2) N L(A1))

by employing the standard constructions for complement and
union. Then check emptiness.

Others: translate to equivalent DFAs. See above.

Emptiness of CFLs

Given a CFG G = (V, X, P, S) the emptiness problem can be
decided as follows:

© Mark the terminals and €, as generating

© Mark as generating all those non-terminals that have a
production with only generating symbols in the RHS.

© Repeat step 2 until nothing new is marked generating.
© Check whether the start symbol is marked as generating.

Chomsky normal form

For many of the remaining questions, it is convenient to introduce
a particularly simple class of CFGs that is still as powerful as CFGs
in general.

Definition
A context free (type 2) grammar is in Chomsky normal form if
every production is of one of the forms

@S —e¢ or

@ A — BC where B and C are not S, or

o A— a.

Theorem
Any CFL is generated by a CFG in Chomsky normal form.

Proof.

Let G = (V,X,P,S) be a CFG.

Step 0: Define an equivalent CFG Gy = (V U {So}, X, Po, So) with a fresh start
variable Sy and the production Sp — S. We also remove all productions of the
form A — € and patch this up by introducing new productions for every
occurrence of A in a body with that occurrence removed.

(E.g., A— €| aAbA becomes A — ab | abA | aAb | aAbA.)

Productions B — A are replaced by B — ¢ unless that is one we had removed
earlier.

Repeat until € occurs at most in Sp — €.

Step 1: Define an equivalent CFG G; = (V4, %, P1, Sp) with fresh
non-terminals for terminals Vi = VU {Sp} U{ X; | a€ X }. Here
P; is derived from Pgy by replacing all occurrences of a terminal

a € X in the body of a production by the corresponding
non-terminal X, and then adding productions X; — a.

Proof cont.

Step 2: Define an equivalent CFG G, = (V4, X, P2, S). To generate P, from
P, eliminate productions of the form A — B by

@ determining all derivations A; =6 ... =>¢ Ak =6 a ¢ Vinot
containing repetitions of non-terminals,

@ drop all productions A — B, and

© introduce A; — o for each of the derivations determined before.

Step 3: Define an equivalent CFG G3 = (V3,%, P3,5). To
generate P3 from P, replace all productions A — By ... B, with
n>?2 by A— BlCl, Cl — 82C2, ey C,,,z — B,,,lB,, for fresh
non-terminals C;. (These are distinct for each such

production.) O

The word problem for CFLs

The word problem for CFGs is decidable.
More precisely we'll show that

Theorem

Let G = (V,X,P,S) be a CFG in Chomsky normal form. Then
the CYK-algorithm decides w € L(G) in time O(|w|3) for w € £*.

The CYK-algorithm (for Cocke-Younger-Kasami) works as follows.
Given w = a; ... a, compute for i,j € {1,...,n} the set
Nj={AcV | A=} aj...a; } of non-terminals generating
aj...aj. Then

weL(G) iff SeVy, .

The details are not in [Sipser2006].

CYK-Algorithm

for CFG G = (V, X, P,S) in Chomsky normal form.
“Oninput w = a1...a,
Q fori,j:=1tondo
N e {AeV | A—saeP} ifi=]j
Y0 otherwise
Q ford:=1ton—1landi:=1ton—ddo
O j=i+d
@ for k:=itoj—1do

N,-,j:_N,-JU{AeV‘HB,C<A%BC€PA)}

B e N,'yk ANC e Nk+17j
© Return whether S € Ny .

Preview of undecidable CFL problems

Later we'll develop a theory that allows us to prove rigorously that
there are problems that cannot be solved by any algorithm that
can be implemented as a computer program.
Such problems are called undecidable.
Some simple decision problems in the realm of CFLs are
undecidable:

@ Is a given CFG ambiguous?

Is any CFG for a given CFL necessarily ambiguous?

°
@ |s the intersection of two given CFLs empty?
@ Are two given CFGs/PDAs equivalent?

°

Does a given CFG generate all strings >*7

—THE END—

	CFLs
	Intro

