COMP4141 Theory of Computation Lecture 12 NP-Completeness

Ron van der Meyden

CSE, UNSW

Revision: 2013/04/21

(Credits: Rob van Glabbeek, Peter Hofner, D Dill, K Engelhardt, M Sipser, W Thomas, T Wilke)

$\mathbf{P} \stackrel{?}{=} \mathbf{N}\mathbf{P}$

Recall:

P—problems that can be solved in polynomial time on a TM. **NP**—problems that can be solved in polynomial time on an NTM.

Question

Is $\mathbf{P} = \mathbf{NP}$?

Equivalently: Can we simulate a polynomial time non-deterministic TM (NTM) in polynomial time on a (deterministic) TM?

At this point, no one knows for sure, but "no" might be a good bet.

NP-complete problems

This is about decision problems (problems with yes/no answers). Equivalently, solving the membership problem $x \in L$. Obviously $\mathbf{P} \subseteq \mathbf{NP}$. Nobody knows for sure whether $\mathbf{NP} \subseteq \mathbf{P}$ Intuitively, \mathbf{NP} -complete problems are the "hardest" problems in

Intuitively, **NP**-complete problems are the "hardest" problems in **NP**.

P Reducibility

Recall how we use mapping-reducibility to transfer (un)decidability from one problem to the next.

Definition

 $f: \Sigma^* \longrightarrow \Sigma^*$ is a polynomial time computable (or **P** computable) function if some polynomial time TM *M* exists that halts with just f(w) on its tape, when started on any input $w \in \Sigma^*$.

Definition

 $A \subseteq \Sigma_1^*$ is polynomial time mapping reducible (or **P** reducible) to $B \subseteq \Sigma_2^*$, written $A \leq_{\mathbf{P}} B$, if a **P** computable function $f : \Sigma_1^* \longrightarrow \Sigma_2^*$ exists that is also a reduction (from A to B).

P Reducibility cont.

Theorem

If $A \leq_{\mathbf{P}} B$ and $B \in \mathbf{P}$ then $A \in \mathbf{P}$.

Proof.

Suppose f is the **P** reduction from A to B that runs in time $O(n^{k_1})$ and M_B is a **P** decider for B that runs in time $O(n^{k_2})$. To decide $w \in A$, first compute f(w), then run M_B on f(w). Note that the input to M_B has size at most $|w|^{k_1}$. The total running time is $O(|w|^{k_1} + (|w|^{k_1})^{k_2}) = O(|w|^{k_1k_2})$.

NP-Hardness

Definition

A language B is **NP**-hard if every $A \in \mathbf{NP}$ is **P** reducible to B.

Intuitively, this says B is at least as hard as any problem in **NP**.

Theorem

If B is **NP**-hard and $B \leq_{\mathbf{P}} C$ then C is **NP**-hard.

NP-Completeness

Definition

A language B is **NP**-complete if

- **○** *B* ∈ **NP**
- **2** *B* is **NP**-hard (i.e. *every* $A \in \mathbf{NP}$ is **P** reducible to *B*).

Theorem

If B is NP-complete and $B \in \mathbf{P}$ then $\mathbf{P} = \mathbf{NP}$.

Theorem

If B is NP-complete and $B \leq_{\mathbf{P}} C$ for $C \in \mathbf{NP}$, then C is NP-complete.

Proof.

Polynomial time reductions compose.

NP-Completeness

If there are any problems in $\textbf{NP} \setminus \textbf{P},$ the NP-complete problems are all there.

Every **NP**-complete problem can be translated in deterministic polynomial time to every other **NP**-complete problem.

So, if there is a P solution to one NP-complete problem, there is a P solution to every NP problem.

NP-Hardness by Reduction

Typical method: Reduce a known $\mathbf{NP}\text{-hard}$ problem P_1 to the new problem P_2 .

Basic Proof Strategy

NP-completeness is a good news/bad news situation.

- Good news: The problem is in NP!
- Bad news: The problem is **NP**-hard!
- So, a typical **NP**-completeness proof consists of two parts:
 - **O** Prove that the problem is in **NP** (i.e., it has **P** verifier).
 - Prove that the problem is at least as hard as other problems in NP.

A TM can simulate an ordinary computer in polynomial time, so it is sufficient to describe a polynomial-time checking algorithm that will run on any reasonable model of computation.

NP-Hardness

A problem is **NP**-*hard* if having a polynomial-time solution to it would give us a polynomial solution to every problem in **NP**.

Proving that the problem is NP-hard: The usual strategy is to find a polynomial-time reduction of a known **NP**-hard problem (say P_1) to the problem in question (say P_2).

The goal is to show that P_2 is at least as hard (in terms of polynomial vs. super-polynomial time) as P_1 .

Repeated warning: Make sure you are reducing the known problem to the unknown problem!

In practice, there are now thousands of known **NP**-complete problems. A good technique is to look for one similar to the one you are trying to prove **NP**-hard.

Computers and Intractability - A guide to theory of NP-completeness, M.R. Garey and D.S. Johnson, Freeman 1979 lists a whole bunch.

Boolean Formulae

Let $Prop = \{x, y, ...\}$ be a countable set of *Boolean variables* (or *propositions*).

A CFG for Boolean formulae over Prop is:

$$\phi \to p \mid \phi \land \phi \mid \neg \phi \mid (\phi)$$
$$p \to x \mid y \mid \dots$$

We use abbreviations such as

$$\phi_1 \lor \phi_2 = \neg (\neg \phi_1 \land \neg \phi_2) \qquad \phi_1 \Rightarrow \phi_2 = \neg \phi_1 \lor \phi_2$$

FALSE = $(x \land \neg x)$ TRUE = ¬FALSE

Let $Prop(\phi)$ be the propositions that occur in ϕ .

Semantics of Boolean Formulae

A Boolean formula is either **TT** (for "true") or **FF** (for "false"), possibly depending on the interpretation of its propositions. Let $\mathbb{B} = \{FF, TT\}.$

Definition

An *interpretation* (of $Prop(\phi)$) is a function $\pi : Prop(\phi) \longrightarrow \mathbb{B}$. For Boolean formulae ϕ we define π satisfies ϕ , written $\pi \models \phi$, inductively by:

Base:
$$\pi \models x$$
 iff $\pi(x) = \mathbf{TT}$.
Induction:

•
$$\pi \models \neg \phi$$
 iff $\pi \not\models \phi$.

•
$$\pi \models \phi_1 \land \phi_2$$
 iff both $\pi \models \phi_1$ and $\pi \models \phi_2$.

•
$$\pi \models (\phi)$$
 iff $\pi \models \phi$.

 ϕ is *satisfiable* if there exists an interpretation π such that $\pi \models \phi$.

SAT—An NP-Complete Problem

 $SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable Boolean formula } \}$

Theorem SAT is **NP**-complete.

Proof of SAT \in NP. If $\pi \models \phi$ we use $\langle \pi \rangle$ as certicate.

Proof of NP-Hardness of SAT

Let $A \in \mathbf{NP}$. Let $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$ be a deciding NTM with L(M) = A and let p be a polynomial such that M takes at most p(|w|) steps on any computation for any $w \in \Sigma^*$.

Construct a **P** reduction from A to SAT. On input w a Boolean formula ϕ_w that describes M's possible computations on w. M accepts w iff ϕ_w is satisfiable. The satisfying interpretation resolves the nondeterminism in the computation tree to arrive at an accepting branch of the computation tree.

Remains to be done: define ϕ_w .

Proof of NP-Hardness of SAT cont.

Recall that M accepts w if an $n \le p(|w|)$ and a sequence $(C_i)_{0 \le i \le n}$ of configurations exist, where

- **1** $C_1 = q_0 w$,
- **2** each C_i can yield C_{i+1} , and
- **3** C_n is an accepting configuration.

Let $\Delta = Q \cup \Gamma \cup \{\#\}$. Each C_i can be represented as a #-enclosed string over alphabet Δ no longer than n + 3.

The Boolean formula ϕ_w shall represent *all* such sequences $(C_i)_{0 \le i \le n}$ beginning with $q_0 w$.

$$\phi_{w} = \phi_{\mathsf{cell}} \land \phi_{\mathsf{start}} \land \phi_{\mathsf{move}} \land \phi_{\mathsf{accept}}$$

ϕ_{cell}

... describes an n^2 grid using propositions

$$Prop = \{ x_{i,k,s} \mid i,k \in \{1,\ldots,n\} \land s \in \Delta \} .$$

$$\phi_{\mathsf{cell}} = \bigwedge_{0 < i,k \le n} \left(\bigvee_{s \in \Delta} x_{i,k,s} \land \bigwedge_{s,t \in \Delta, s \neq t} (\neg x_{i,k,s} \lor \neg x_{i,k,t}) \right)$$

Row *i* in the grid corresponds to configuration C_i . Unused tape cells are blank.

Every grid cell contains exactly one symbol or a state.

ϕ_{start}

... specifies that the first row of the grid contains $q_0 w$ where $w = w_1 \dots w_{|w|}$:

$$\phi_{\texttt{start}} = x_{1,1,\#} \land x_{1,2,q_0} \land \bigwedge_{2 < i \le |w|+2} x_{1,i,w_{i-2}} \land \bigwedge_{|w|+2 < i \le n-1} x_{1,i,\sqcup} \land x_{1,n,\#}$$

ϕ_{move}

... ensures that C_i yields C_{i+1} by describing *legal* 2 × 3 windows of cells.

$$\phi_{\text{move}} = \bigwedge_{\substack{0 < i,k < n \text{ } \boxed{a_1 \quad a_2 \quad a_3 \\ a_4 \quad a_5 \quad a_6}}} \bigvee_{\text{is legal}} \left(\begin{array}{c} x_{i,k-1,a_1} \quad \land x_{i,k,a_2} \quad \land x_{i,k+1,a_3} \land \\ x_{i+1,k-1,a_4} \land x_{i+1,k,a_5} \land x_{i+1,k+1,a_6} \end{array} \right)$$

what is legal depends on the transition function δ .

ϕ_{accept}

... states that the accept state is reached:

$$\phi_{\mathsf{accept}} = \bigvee_{0 < i,k \leq n} x_{i,k,q_{\mathsf{accept}}}$$

Finally we check that the size of ϕ_w is polynomial in |w| and that ϕ_w is constructable in polynomial time.

-The End-