
COMP4141 Theory of Computation
Lecture 12 NP-Completeness

Ron van der Meyden

CSE, UNSW

Revision: 2013/04/21

(Credits: Rob van Glabbeek, Peter Hofner, D Dill, K Engelhardt,
M Sipser, W Thomas, T Wilke)

P
?
= NP

Recall:
P—problems that can be solved in polynomial time on a TM.
NP—problems that can be solved in polynomial time on an NTM.

Question

Is P = NP?

Equivalently: Can we simulate a polynomial time non-deterministic
TM (NTM) in polynomial time on a (deterministic) TM?

At this point, no one knows for sure, but “no” might be a good
bet.

NP-complete problems

This is about decision problems (problems with yes/no answers).

Equivalently, solving the membership problem x ∈ L.

Obviously P ⊆ NP.

Nobody knows for sure whether NP ⊆ P

Intuitively, NP-complete problems are the “hardest” problems in
NP.

P Reducibility

Recall how we use mapping-reducibility to transfer (un)decidabilty
from one problem to the next.

Definition

f : Σ∗ −→ Σ∗ is a polynomial time computable (or P computable)
function if some polynomial time TM M exists that halts with just
f (w) on its tape, when started on any input w ∈ Σ∗.

Definition

A ⊆ Σ∗1 is polynomial time mapping reducible (or P reducible) to
B ⊆ Σ∗2, written A ≤P B, if a P computable function
f : Σ∗1 −→ Σ∗2 exists that is also a reduction (from A to B).

P Reducibility cont.

Theorem

If A ≤P B and B ∈ P then A ∈ P.

Proof.

Suppose f is the P reduction from A to B that runs in time
O(nk1) and MB is a P decider for B that runs in time O(nk2).

To decide w ∈ A, first compute f (w), then run MB on f (w).

Note that the input to MB has size at most |w |k1 .

The total running time is O(|w |k1 + (|w |k1)k2) = O(|w |k1k2).

NP-Hardness

Definition

A language B is NP-hard if every A ∈ NP is P reducible to B.

Intuitively, this says B is at least as hard as any problem in NP.

Theorem

If B is NP-hard and B ≤P C then C is NP-hard.

NP-Completeness

Definition

A language B is NP-complete if

1 B ∈ NP

2 B is NP-hard (i.e. every A ∈ NP is P reducible to B).

Theorem

If B is NP-complete and B ∈ P then P = NP.

Theorem

If B is NP-complete and B ≤P C for C ∈ NP, then C is
NP-complete.

Proof.

Polynomial time reductions compose.

NP-Completeness

If there are any problems in NP \ P, the NP-complete problems
are all there.

Every NP-complete problem can be translated in deterministic
polynomial time to every other NP-complete problem.

So, if there is a P solution to one NP-complete problem, there is a
P solution to every NP problem.

NP-Hardness by Reduction

Typical method: Reduce a known NP-hard problem P1 to the new
problem P2 .

Basic Proof Strategy

NP-completeness is a good news/bad news situation.

Good news: The problem is in NP!

Bad news: The problem is NP-hard!

So, a typical NP-completeness proof consists of two parts:

1 Prove that the problem is in NP (i.e., it has P verifier).

2 Prove that the problem is at least as hard as other problems
in NP.

A TM can simulate an ordinary computer in polynomial time, so it
is sufficient to describe a polynomial-time checking algorithm that
will run on any reasonable model of computation.

NP-Hardness
A problem is NP-hard if having a polynomial-time solution to it
would give us a polynomial solution to every problem in NP.

Proving that the problem is NP-hard: The usual strategy is to
find a polynomial-time reduction of a known NP-hard problem
(say P1) to the problem in question (say P2).

The goal is to show that P2 is at least as hard (in terms of
polynomial vs. super-polynomial time) as P1.

Repeated warning: Make sure you are reducing the known problem
to the unknown problem!

In practice, there are now thousands of known NP-complete
problems. A good technique is to look for one similar to the one
you are trying to prove NP-hard.

Computers and Intractability - A guide to theory of
NP-completeness, M.R. Garey and D.S. Johnson, Freeman 1979
lists a whole bunch.

Boolean Formulae

Let Prop = {x , y , . . .} be a countable set of Boolean variables (or
propositions).

A CFG for Boolean formulae over Prop is:

φ→ p | φ ∧ φ | ¬φ | (φ)

p → x | y | . . .

We use abbreviations such as

φ1 ∨ φ2 = ¬(¬φ1 ∧ ¬φ2) φ1 ⇒ φ2 = ¬φ1 ∨ φ2

false = (x ∧ ¬x) true = ¬false

Let Prop(φ) be the propositions that occur in φ.

Semantics of Boolean Formulae

A Boolean formula is either TT (for “true”) or FF (for “false”),
possibly depending on the interpretation of its propositions. Let
B = {FF,TT}.

Definition

An interpretation (of Prop(φ)) is a function π : Prop(φ) −→ B.
For Boolean formulae φ we define π satisfies φ, written π |= φ,
inductively by:
Base: π |= x iff π(x) = TT.
Induction:

π |= ¬φ iff π 6|= φ.

π |= φ1 ∧ φ2 iff both π |= φ1 and π |= φ2.

π |= (φ) iff π |= φ.

φ is satisfiable if there exists an interpretation π such that π |= φ.

SAT—An NP-Complete Problem

SAT = { 〈φ〉 | φ is a satisfiable Boolean formula }

Theorem

SAT is NP-complete.

Proof of SAT ∈ NP.

If π |= φ we use 〈π〉 as certicate.

Proof of NP-Hardness of SAT

Let A ∈ NP. Let M = (Q,Σ, Γ, δ, q0, qaccept, qreject) be a deciding
NTM with L(M) = A and let p be a polynomial such that M takes
at most p(|w |) steps on any computation for any w ∈ Σ∗.

Construct a P reduction from A to SAT. On input w a Boolean
formula φw that describes M’s possible computations on w . M
accepts w iff φw is satisfiable. The satisfying interpretation
resolves the nondeterminism in the computation tree to arrive at
an accepting branch of the computation tree.

Remains to be done: define φw .

Proof of NP-Hardness of SAT cont.

Recall that M accepts w if an n ≤ p(|w |) and a sequence
(Ci)0<i≤n of configurations exist, where

1 C1 = q0w ,

2 each Ci can yield Ci+1, and

3 Cn is an accepting configuration.

Let ∆ = Q ∪ Γ ∪ {#}. Each Ci can be represented as a
#-enclosed string over alphabet ∆ no longer than n + 3.

φw

The Boolean formula φw shall represent all such sequences
(Ci)0<i≤n beginning with q0w .

φw = φcell ∧ φstart ∧ φmove ∧ φaccept

φcell

. . . describes an n2 grid using propositions

Prop = { xi ,k,s | i , k ∈ {1, . . . , n} ∧ s ∈ ∆ } .

φcell =
∧

0<i ,k≤n

∨
s∈∆

xi ,k,s ∧
∧

s,t∈∆,s 6=t

(¬xi ,k,s ∨ ¬xi ,k,t)

Row i in the grid corresponds to configuration Ci . Unused tape
cells are blank.

Every grid cell contains exactly one symbol or a state.

φstart

. . . specifies that the first row of the grid contains q0w where
w = w1 . . .w|w |:

φstart = x1,1,#∧x1,2,q0∧
∧

2<i≤|w |+2

x1,i ,wi−2
∧

∧
|w |+2<i≤n−1

x1,i ,t∧x1,n,#

φmove

. . . ensures that Ci yields Ci+1 by describing legal 2× 3 windows of
cells.

φmove =
∧

0<i ,k<n

∨
a1 a2 a3

a4 a5 a6
is legal(

xi ,k−1,a1 ∧ xi ,k,a2 ∧ xi ,k+1,a3 ∧
xi+1,k−1,a4 ∧ xi+1,k,a5 ∧ xi+1,k+1,a6

)
what is legal depends on the transition function δ.

φaccept

. . . states that the accept state is reached:

φaccept =
∨

0<i ,k≤n
xi ,k,qaccept

Finally we check that the size of φw is polynomial in |w | and that
φw is constructable in polynomial time.

—The End—

	NP-Completeness
	Intro

	SAT
	Intro

