COMP4141 Theory of Computation Lecture 12 NP-Completeness

Ron van der Meyden

CSE, UNSW

Revision: 2013/04/21
(Credits: Rob van Glabbeek, Peter Hofner, D Dill, K Engelhardt, M Sipser, W Thomas, T Wilke)

$\mathbf{P} \stackrel{?}{=} \mathbf{N P}$

Recall:

\mathbf{P}-problems that can be solved in polynomial time on a TM. NP—problems that can be solved in polynomial time on an NTM.

Question

Is $\mathbf{P}=\mathbf{N P}$?
Equivalently: Can we simulate a polynomial time non-deterministic TM (NTM) in polynomial time on a (deterministic) TM?

At this point, no one knows for sure, but "no" might be a good bet.

NP-complete problems

This is about decision problems (problems with yes/no answers).
Equivalently, solving the membership problem $x \in L$.
Obviously $\mathbf{P} \subseteq \mathbf{N P}$.
Nobody knows for sure whether NP $\subseteq \mathbf{P}$
Intuitively, NP-complete problems are the "hardest" problems in NP.

P Reducibility

Recall how we use mapping-reducibility to transfer (un)decidabilty from one problem to the next.

Definition

$f: \Sigma^{*} \longrightarrow \Sigma^{*}$ is a polynomial time computable (or \mathbf{P} computable) function if some polynomial time TM M exists that halts with just $f(w)$ on its tape, when started on any input $w \in \Sigma^{*}$.

Definition

$A \subseteq \Sigma_{1}^{*}$ is polynomial time mapping reducible (or \mathbf{P} reducible) to
$B \subseteq \Sigma_{2}^{*}$, written $A \leq_{\mathbf{p}} B$, if a \mathbf{P} computable function
$f: \Sigma_{1}^{*} \longrightarrow \Sigma_{2}^{*}$ exists that is also a reduction (from A to B).

P Reducibility cont.

Theorem

If $A \leq_{\mathbf{P}} B$ and $B \in \mathbf{P}$ then $A \in \mathbf{P}$.

Proof.

Suppose f is the \mathbf{P} reduction from A to B that runs in time $O\left(n^{k_{1}}\right)$ and M_{B} is a \mathbf{P} decider for B that runs in time $O\left(n^{k_{2}}\right)$.
To decide $w \in A$, first compute $f(w)$, then run M_{B} on $f(w)$.
Note that the input to M_{B} has size at most $|w|^{k_{1}}$.
The total running time is $O\left(|w|^{k_{1}}+\left(|w|^{k_{1}}\right)^{k_{2}}\right)=O\left(|w|^{k_{1} k_{2}}\right)$.

NP-Hardness

Definition

A language B is NP-hard if every $A \in \mathbf{N P}$ is \mathbf{P} reducible to B.
Intuitively, this says B is at least as hard as any problem in NP.

Theorem

If B is NP-hard and $B \leq_{\mathbf{p}} C$ then C is NP-hard.

NP-Completeness

Definition

A language B is NP-complete if
(1) $B \in \mathbf{N P}$
(2) B is NP-hard (i.e. every $A \in \mathbf{N P}$ is \mathbf{P} reducible to B).

Theorem

If B is $\mathbf{N P}$-complete and $B \in \mathbf{P}$ then $\mathbf{P}=\mathbf{N P}$.

Theorem

If B is NP-complete and $B \leq_{\mathbf{p}} C$ for $C \in \mathbf{N P}$, then C is NP-complete.

Proof.

Polynomial time reductions compose.

NP-Completeness

If there are any problems in $\mathbf{N P} \backslash \mathbf{P}$, the $\mathbf{N P}$-complete problems are all there.

Every NP-complete problem can be translated in deterministic polynomial time to every other NP-complete problem.
So, if there is a \mathbf{P} solution to one $\mathbf{N P}$-complete problem, there is a \mathbf{P} solution to every NP problem.

NP-Hardness by Reduction

Typical method: Reduce a known NP-hard problem P_{1} to the new problem P_{2}.

Basic Proof Strategy

NP-completeness is a good news/bad news situation.

- Good news: The problem is in NP!
- Bad news: The problem is NP-hard!

So, a typical NP-completeness proof consists of two parts:
(1) Prove that the problem is in NP (i.e., it has \mathbf{P} verifier).
(2) Prove that the problem is at least as hard as other problems in NP.
A TM can simulate an ordinary computer in polynomial time, so it is sufficient to describe a polynomial-time checking algorithm that will run on any reasonable model of computation.

NP-Hardness

A problem is NP-hard if having a polynomial-time solution to it would give us a polynomial solution to every problem in NP.

Proving that the problem is NP-hard: The usual strategy is to find a polynomial-time reduction of a known NP-hard problem (say P_{1}) to the problem in question (say P_{2}).
The goal is to show that P_{2} is at least as hard (in terms of polynomial vs. super-polynomial time) as P_{1}.

Repeated warning: Make sure you are reducing the known problem to the unknown problem!

In practice, there are now thousands of known NP-complete problems. A good technique is to look for one similar to the one you are trying to prove NP-hard.

Computers and Intractability - A guide to theory of NP-completeness, M.R. Garey and D.S. Johnson, Freeman 1979 lists a whole bunch.

Boolean Formulae

Let Prop $=\{x, y, \ldots\}$ be a countable set of Boolean variables (or propositions).
A CFG for Boolean formulae over Prop is:

$$
\begin{aligned}
& \phi \rightarrow p|\phi \wedge \phi| \neg \phi \mid(\phi) \\
& p \rightarrow x|y| \ldots
\end{aligned}
$$

We use abbreviations such as

$$
\begin{aligned}
\phi_{1} \vee \phi_{2} & =\neg\left(\neg \phi_{1} \wedge \neg \phi_{2}\right) & \phi_{1} \Rightarrow \phi_{2} & =\neg \phi_{1} \vee \phi_{2} \\
\text { FALSE } & =(x \wedge \neg x) & \text { TRUE } & =\neg \text { FALSE }
\end{aligned}
$$

Let $\operatorname{Prop}(\phi)$ be the propositions that occur in ϕ.

Semantics of Boolean Formulae

A Boolean formula is either TT (for "true") or FF (for "false"), possibly depending on the interpretation of its propositions. Let $\mathbb{B}=\{\mathbf{F F}, \mathbf{T T}\}$.

Definition

An interpretation $($ of $\operatorname{Prop}(\phi))$ is a function $\pi: \operatorname{Prop}(\phi) \longrightarrow \mathbb{B}$. For Boolean formulae ϕ we define π satisfies ϕ, written $\pi \models \phi$, inductively by:
Base: $\pi \models x$ iff $\pi(x)=$ TT.

Induction:

- $\pi \vDash \neg \phi$ iff $\pi \not \vDash \phi$.
- $\pi \models \phi_{1} \wedge \phi_{2}$ iff both $\pi \models \phi_{1}$ and $\pi \models \phi_{2}$.
- $\pi \models(\phi)$ iff $\pi \models \phi$.
ϕ is satisfiable if there exists an interpretation π such that $\pi \models \phi$.

SAT—An NP-Complete Problem

$$
S A T=\{\langle\phi\rangle \mid \phi \text { is a satisfiable Boolean formula }\}
$$

Theorem

SAT is NP-complete.

Proof of SAT \in NP.

If $\pi \models \phi$ we use $\langle\pi\rangle$ as certicate.

Proof of NP-Hardness of SAT

Let $A \in \mathbf{N P}$. Let $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$ be a deciding NTM with $L(M)=A$ and let p be a polynomial such that M takes at most $p(|w|)$ steps on any computation for any $w \in \Sigma^{*}$.
Construct a \mathbf{P} reduction from A to $S A T$. On input w a Boolean formula ϕ_{w} that describes M's possible computations on $w . M$ accepts w iff ϕ_{w} is satisfiable. The satisfying interpretation resolves the nondeterminism in the computation tree to arrive at an accepting branch of the computation tree.
Remains to be done: define ϕ_{w}.

Proof of NP-Hardness of SAT cont.

Recall that M accepts w if an $n \leq p(|w|)$ and a sequence $\left(C_{i}\right)_{0<i \leq n}$ of configurations exist, where
(1) $C_{1}=q_{0} w$,
(2) each C_{i} can yield C_{i+1}, and
(3) C_{n} is an accepting configuration.

Let $\Delta=Q \cup \Gamma \cup\{\#\}$. Each C_{i} can be represented as a $\#$-enclosed string over alphabet Δ no longer than $n+3$.

ϕ_{w}

The Boolean formula ϕ_{w} shall represent all such sequences $\left(C_{i}\right)_{0<i \leq n}$ beginning with $q_{0} w$.

$$
\phi_{w}=\phi_{\text {cell }} \wedge \phi_{\text {start }} \wedge \phi_{\text {move }} \wedge \phi_{\text {accept }}
$$

$\phi_{\text {cell }}$

\ldots describes an n^{2} grid using propositions

$$
\begin{gathered}
\operatorname{Prop}=\left\{x_{i, k, s} \mid i, k \in\{1, \ldots, n\} \wedge s \in \Delta\right\} . \\
\phi_{\text {cell }}=\bigwedge_{0<i, k \leq n}\left(\bigvee_{s \in \Delta} x_{i, k, s} \wedge \bigwedge_{s, t \in \Delta, s \neq t}\left(\neg x_{i, k, s} \vee \neg x_{i, k, t}\right)\right)
\end{gathered}
$$

Row i in the grid corresponds to configuration C_{i}. Unused tape cells are blank.

Every grid cell contains exactly one symbol or a state.

$\phi_{\text {start }}$

...specifies that the first row of the grid contains $q_{0} w$ where

$$
w=w_{1} \ldots w_{|w|}:
$$

$$
\phi_{\text {start }}=x_{1,1, \#} \wedge x_{1,2, q_{0}} \wedge \bigwedge_{2<i \leq|w|+2} x_{1, i, w_{i-2}} \wedge \bigwedge_{|w|+2<i \leq n-1} x_{1, i, \sqcup} \wedge x_{1, n, \#}
$$

$\phi_{\text {move }}$

... ensures that C_{i} yields C_{i+1} by describing legal 2×3 windows of cells.

\[

\]

what is legal depends on the transition function δ.

$\phi_{\text {accept }}$

...states that the accept state is reached:

$$
\phi_{\text {accept }}=\bigvee_{0<i, k \leq n} x_{i, k, q_{\text {accept }}}
$$

Finally we check that the size of ϕ_{w} is polynomial in $|w|$ and that ϕ_{w} is constructable in polynomial time.

