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Cook’s Theorem (SAT is NP-Complete)

Cook's theorem gives a “generic reduction” for every problem in
NP to SAT. So SAT is as hard as any other problem in NP—it's
NP-complete.

So, SAT is the granddaddy of all NP-complete problems.

Many people have worked on the SAT problem, and there are now
solvers (SAT solvers) for it that can solve problems up to thousands
of variables in practice (though not polynomial time in theory).

People frequently translate NP-complete problems to propositional
logic, and then attack them with these general solvers!



CSAT

CSAT is a special case of SAT.
CSAT = { (¢) | ¢ is a satisfiable cnf formula }

where a Boolean formula is in cnf (for conjunctive normal form) if
it is (also) generated by the grammar

d—=(c)] (c)no c—Ll|tvVce
t—=p|-p p=x|yl ...
We call c¢s clauses, {s literals, and ps propositions.

Example
(x Vz)A(yV z) is a cnf for the Boolean formula (x A y) V z.




CSAT is NP-Complete

Clearly CSAT is in NP because we can use the same certificate for
¢ in cnf as we would for the same ¢ in SAT.

Giving a P reduction from SAT to CSAT is tricky.

A straight-forward translation of Boolean formulae into equivalent
cnf may result in an exponential blow-up, meaning that this
approach is useless.

Instead, we recall a reduction f won't have to preserve satisfaction:

Vr(rkE¢ & mkEf(9)

but merely satisfiability

Ir(rE¢) & In(rE=1(9)

meaning that we're free to choose different 7s for the two sides.



CSAT is NP-Hard

The translation from Boolean formulae to cnf proceeds in two
steps which are both in P.

@ Translate to nnf (negation normal form) by pushing all
negation symbols down to propositions. (This is still
satisfaction-preserving.)

@ Translate from nnf to cnf. (This merely preserves
satisfiability.)

nnf formulas are those that have all negations applied only to
atomic propositions.



Pushing Down —

We use de Morgan's laws and the law of double negation to
rewrite left-hand-sides to right-hand-sides:

(o NP) = =(9) vV ~(4)
=(o V) & () A ()
~(=(¢)) & ¢

Example

(VYD A(xVy)) & ~(=(x Vy)) Vo(=x V)
S xVyVa(-xVy)
< xVyVa(=x)A-y
S XxVyVxA-y




Pushing Down — cont.

Theorem

Every Boolean formula ¢ is equivalent to a Boolean formula 1) in
nnf. Moreover, |1| is linear in |¢| and 1) can be constructed from ¢
inP.

Proof.

by induction on the number n of Boolean operators (A, V, =) in ¢
we may show that there is an equivalent v in nnf with at most

2n — 1 operators. Ol

<




nnf — cnf

Theorem

There is a constant c such that every nnf ¢ has a cnf i) such that:
© 1 consists of at most |¢| clauses.
@ ¢ is constructable from ¢ in time at most c|®|?.

© 7 | ¢ iff there exists an extension 7' of m satisfying 7' |= 1),
for all interpretations © of the propositions in ¢.

Proof.
by induction on |¢|. O




nnf — cnf cont.

Example

Consider
(x A=y) V(=xA(yV2z))

An equisatisfiable cnf is

(uVvx)AN(uVay)A(—uV-x)AN(-uVvVy)A(-uV vV z)

General trick: AV B is satisfiable iff (AV p) A (B V —p) is
satisfiable, where p is a new atomic proposition.



3SAT
3SAT is a special case of CSAT.
3SAT = { (¢) | ¢ is a satisfiable 3cnf formula }

where a Boolean formula is in 3cnf (for 3 literal conjunctive normal
form) if it is (also) generated by the grammar

d—(c)|(c)no c—UVIVL
C—=pl-p p—=x|yl| ...

Example

(xVyVz)A(xVyV-az)A(xV-yVz)A(xV-oyV-z)isa 3enf
for the Boolean formula x.




3SAT is NP-Complete

Proof.
Clearly 3SAT is in NP because we can use the same certificate for
¢ in 3cnf as we would for the same ¢ in SAT (or CSAT).

Sipser prefers to adapt his NP-hardness proof for SAT to 3SAT
over giving a P reduction from SAT to 3SAT.

We P reduce from CSAT to 3SAT instead, by translating arbitrary
clauses into clauses with exactly three literals. [




Proof detail: how to transform a cnf ¢ = A7_; ¢; into an

equisatisfiable 3cnf. We transform each clause ¢; = \/;11 4
depending on the number k; of literals in it. (we omit subscript i.)

Case k =1 (1) is replaced by
(LLVuVv V)ALV uV=V)A(LLV —uV V)ALV —uV —v)
for some fresh propositions u, v.
Case k =2 ({1 V £2) is replaced by
(b1 VLV u)A (b1 VLl V —u)

for some fresh proposition u.
Case k = 3 is 3cnf already.
Case k >3 (\/Jl-‘:1 ¢;) is replaced by
k—4
(ﬁl\/ﬁz\/ul)/\/\ (ﬁj.:,_z\/—\Uj\/Uj_:,_l)/\(—|uk_3\/£k_1\/€k)
j=1

for some k — 3 fresh propositions u1, ..., ux_3.



For the correctness argument, note that to satisfy the formula in
the case for k > 3 using only the u;, we need the following formula
to be satisfied:

up N\ (—‘ul V U2) VANPIAN (‘!Uk_4 V uk_3) N Ug_3
or equivalently,
A (up = w) Ao A (Uk—g = Uk—3) N\ Uk_3

But this is easily seen to be unsatisfiable!

On the other hand if we drop any one of the conjuncts, it is
satisfiable (all true to the left, all false to the right of dropped
position).



CLIQUE is NP-Complete

A k-clique in an undirected graph is a set of k nodes such that
there is an edge between each pair.

Let

B G is undirected graph
CLIQUE = { (G, k) ‘ that has a k-clique }

We show NP-completeness on the whiteboard.



HAMPATH is NP-Complete

A Hamiltonian path from node s to node t in a (directed) graph is
a path starting at s and finishing at t that visits every node exactly
once.

HAMPATH — { (G, s, ) ‘ Directed graph G has a }

Hamiltonian path from s to t

HAMPATH is in NP. We show NP-completeness by proving
3SAT <p HAMPATH on the whiteboard.

—THE END—
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