COMP4141 Theory of Computation Lecture 13 NP-Complete Problems

Ron van der Meyden

CSE, UNSW

Revision: 2015/04/23
(Credits: D Dill, K Engelhardt, M Sipser, W Thomas, T Wilke, R van Glabbeek, P Hofner)

Cook's Theorem (SAT is NP-Complete)

Cook's theorem gives a "generic reduction" for every problem in NP to SAT. So SAT is as hard as any other problem in NP-it's NP-complete.
So, SAT is the granddaddy of all NP-complete problems.
Many people have worked on the SAT problem, and there are now solvers (SAT solvers) for it that can solve problems up to thousands of variables in practice (though not polynomial time in theory).
People frequently translate NP-complete problems to propositional logic, and then attack them with these general solvers!

CSAT

CSAT is a special case of SAT.

$$
\operatorname{CSAT}=\{\langle\phi\rangle \mid \phi \text { is a satisfiable cnf formula }\}
$$

where a Boolean formula is in cnf (for conjunctive normal form) if it is (also) generated by the grammar

$$
\begin{array}{ll}
\phi \rightarrow(c) \mid(c) \wedge \phi & c \rightarrow \ell \mid \ell \vee c \\
\ell \rightarrow p \mid \neg p & p \rightarrow x|y| \ldots
\end{array}
$$

We call cs clauses, ℓ s literals, and ps propositions.

Example

$(x \vee z) \wedge(y \vee z)$ is a cnf for the Boolean formula $(x \wedge y) \vee z$.

CSAT is NP-Complete

Clearly CSAT is in NP because we can use the same certificate for ϕ in cnf as we would for the same ϕ in SAT.
Giving a \mathbf{P} reduction from $S A T$ to CSAT is tricky.
A straight-forward translation of Boolean formulae into equivalent cnf may result in an exponential blow-up, meaning that this approach is useless.

Instead, we recall a reduction f won't have to preserve satisfaction:

$$
\forall \pi(\pi \models \phi \quad \Leftrightarrow \quad \pi \models f(\phi))
$$

but merely satisfiability

$$
\exists \pi(\pi \models \phi) \quad \Leftrightarrow \quad \exists \pi(\pi \models f(\phi))
$$

meaning that we're free to choose different $\pi \mathrm{s}$ for the two sides.

CSAT is NP-Hard

The translation from Boolean formulae to cnf proceeds in two steps which are both in \mathbf{P}.
(1) Translate to $n n f$ (negation normal form) by pushing all negation symbols down to propositions. (This is still satisfaction-preserving.)
(2) Translate from nnf to cnf. (This merely preserves satisfiability.)
nnf formulas are those that have all negations applied only to atomic propositions.

Pushing Down \neg

We use de Morgan's laws and the law of double negation to rewrite left-hand-sides to right-hand-sides:

$$
\begin{aligned}
\neg(\phi \wedge \psi) & \Leftrightarrow \neg(\phi) \vee \neg(\psi) \\
\neg(\phi \vee \psi) & \Leftrightarrow \neg(\phi) \wedge \neg(\psi) \\
\neg(\neg(\phi)) & \Leftrightarrow \phi
\end{aligned}
$$

Example

$$
\begin{aligned}
\neg((\neg(x \vee y)) \wedge(\neg x \vee y)) & \Leftrightarrow \neg(\neg(x \vee y)) \vee \neg(\neg x \vee y) \\
& \Leftrightarrow x \vee y \vee \neg(\neg x \vee y) \\
& \Leftrightarrow x \vee y \vee \neg(\neg x) \wedge \neg y \\
& \Leftrightarrow x \vee y \vee x \wedge \neg y
\end{aligned}
$$

Pushing Down \neg cont.

Theorem

Every Boolean formula ϕ is equivalent to a Boolean formula ψ in nnf. Moreover, $|\psi|$ is linear in $|\phi|$ and ψ can be constructed from ϕ in \mathbf{P}.

Proof.

by induction on the number n of Boolean operators (\wedge, \vee, \neg) in ϕ we may show that there is an equivalent ψ in nnf with at most $2 n-1$ operators.

nnf $\longrightarrow \mathbf{c n f}$

Theorem

There is a constant c such that every nnf ϕ has a cnf ψ such that:
(1) ψ consists of at most $|\phi|$ clauses.
(2) ψ is constructable from ϕ in time at most $c|\phi|^{2}$.
(3) $\pi \models \phi$ iff there exists an extension π^{\prime} of π satisfying $\pi^{\prime} \models \psi$, for all interpretations π of the propositions in ϕ.

Proof.

by induction on $|\phi|$.

nnf \longrightarrow cnf cont.

Example

Consider

$$
(x \wedge \neg y) \vee(\neg x \wedge(y \vee z))
$$

An equisatisfiable cnf is

$$
(u \vee x) \wedge(u \vee \neg y) \wedge(\neg u \vee \neg x) \wedge(\neg u \vee v \vee y) \wedge(\neg u \vee \neg v \vee z)
$$

General trick: $A \vee B$ is satisfiable iff $(A \vee p) \wedge(B \vee \neg p)$ is satisfiable, where p is a new atomic proposition.

3SAT

$3 S A T$ is a special case of CSAT.

$$
3 S A T=\{\langle\phi\rangle \mid \phi \text { is a satisfiable 3cnf formula }\}
$$

where a Boolean formula is in 3cnf (for 3 literal conjunctive normal form) if it is (also) generated by the grammar

$$
\begin{array}{ll}
\phi \rightarrow(c) \mid(c) \wedge \phi & c \rightarrow \ell \vee \ell \vee \ell \\
\ell \rightarrow p \mid \neg p & p \rightarrow x|y| \ldots
\end{array}
$$

Example

$(x \vee y \vee z) \wedge(x \vee y \vee \neg z) \wedge(x \vee \neg y \vee z) \wedge(x \vee \neg y \vee \neg z)$ is a 3cnf for the Boolean formula x.

3SAT is NP-Complete

Proof.

Clearly 3SAT is in NP because we can use the same certificate for ϕ in 3 cnf as we would for the same ϕ in SAT (or CSAT).
Sipser prefers to adapt his NP-hardness proof for SAT to $3 S A T$ over giving a \mathbf{P} reduction from SAT to $3 S A T$.
We \mathbf{P} reduce from CSAT to $3 S A T$ instead, by translating arbitrary clauses into clauses with exactly three literals.

Proof detail: how to transform a $\operatorname{cnf} \phi=\bigwedge_{i=1}^{n} c_{i}$ into an equisatisfiable 3 cnf . We transform each clause $c_{i}=\bigvee_{j=1}^{k_{i}} \ell_{i, j}$ depending on the number k_{i} of literals in it. (We omit subscript i.)
Case $k=1\left(\ell_{1}\right)$ is replaced by

$$
\left(\ell_{1} \vee u \vee v\right) \wedge\left(\ell_{1} \vee u \vee \neg v\right) \wedge\left(\ell_{1} \vee \neg u \vee v\right) \wedge\left(\ell_{1} \vee \neg u \vee \neg v\right)
$$

for some fresh propositions u, v.
Case $k=2\left(\ell_{1} \vee \ell_{2}\right)$ is replaced by

$$
\left(\ell_{1} \vee \ell_{2} \vee u\right) \wedge\left(\ell_{1} \vee \ell_{2} \vee \neg u\right)
$$

for some fresh proposition u.
Case $k=3$ is 3 cnf already.
Case $k>3\left(\bigvee_{j=1}^{k} \ell_{j}\right)$ is replaced by

$$
\left(\ell_{1} \vee \ell_{2} \vee u_{1}\right) \wedge \bigwedge_{j=1}^{k-4}\left(\ell_{j+2} \vee \neg u_{j} \vee u_{j+1}\right) \wedge\left(\neg u_{k-3} \vee \ell_{k-1} \vee \ell_{k}\right)
$$

for some $k-3$ fresh propositions u_{1}, \ldots, u_{k-3}.

For the correctness argument, note that to satisfy the formula in the case for $k>3$ using only the u_{i}, we need the following formula to be satisfied:

$$
u_{1} \wedge\left(\neg u_{1} \vee u_{2}\right) \wedge \ldots \wedge\left(\neg u_{k-4} \vee u_{k-3}\right) \wedge \neg u_{k-3}
$$

or equivalently,

$$
u_{1} \wedge\left(u_{1} \Rightarrow u_{2}\right) \wedge \ldots \wedge\left(u_{k-4} \Rightarrow u_{k-3}\right) \wedge \neg u_{k-3}
$$

But this is easily seen to be unsatisfiable!
On the other hand if we drop any one of the conjuncts, it is satisfiable (all true to the left, all false to the right of dropped position).

CLIQUE is NP-Complete

A k-clique in an undirected graph is a set of k nodes such that there is an edge between each pair.

Let
CLIQUE $=\left\{\begin{array}{l|l}\langle G, k\rangle & \begin{array}{l}G \text { is undirected graph } \\ \text { that has a } k \text {-clique }\end{array}\end{array}\right\}$

We show NP-completeness on the whiteboard.

HAMPATH is NP-Complete

A Hamiltonian path from node s to node t in a (directed) graph is a path starting at s and finishing at t that visits every node exactly once.
HAMPATH $=\left\{\begin{array}{l|l}\langle G, s, t\rangle & \begin{array}{l}\text { Directed graph } G \text { has a } \\ \text { Hamiltonian path from s to } t\end{array}\end{array}\right\}$

HAMPATH is in NP. We show NP-completeness by proving $3 S A T \leq_{\mathbf{P}}$ HAMPATH on the whiteboard.

