
COMP4141 Theory of Computation
Log Space

Ron van der Meyden

CSE, UNSW

Revision: 2015/05/07

(Credits: M Sipser, K Engelhardt, R van Glabbeek, P Hofner)

Sublinear Space

Consider 2-tape TMs where the tape containing the input tape is
read-only.

Change the definition of space complexity to ignore the input tape.
(Tute: This matters at most for sublinear space.)

Definition

L = SPACE(log n) NL = NSPACE(log n)

Example{
0k1k | k ∈ N

}
∈ L: Use a single binary counter initialised to 0

to first count the 0s up and then the 1s down.

Example

Recall that

PATH = { 〈G , s, t〉 | t is reachable from s in directed graph G }

is in P. For PATH ∈ NL we build:
M = “On input 〈(V ,E), s, t〉

1 store v ← s on the 2nd tape

2 repeat up to |V | − 1 times:

3 non-deterministically guess v ′ with (v , v ′) ∈ E

4 if v ′ = t, accept else store v ← v ′

5 reject.”

Whether L = NL is open. Whether PATH ∈ L is unclear, but the
undirected version is known to be in L (Reingold 2005).

Log Space Reducibility

Polynomial-time reducibility (≤P) is too coarse a measure to define
NL-completeness. Instead, we’ll use log space reducibility (≤L)
based on log space transducers:

Definition

A log space transducer is a 3-tape TM with

1 a read-only input tape,

2 a read-write working tape, and

3 a write-only output tape

that uses only O(log n) space on the working tape.

Theorem

If A ≤L B and B ∈ L, then A ∈ L.

NL-completeness

Definition

A language B is NL-complete if B ∈ NL and for every A ∈ NL we
have A ≤L B.

Theorem

PATH is NL-complete.

Corollary

NL ⊆ P

Certificate Definition of NL

Recall that NP is the class of languages for which P verifiers exist.
A similar characterisation can be given for NL.

Theorem

L ∈ NL if L has a logspace verifier, that is, a 3-tape TM M and a
polynomial p such that for all x there exists a certificate u of size
p(|x |) and M accepts iff x ∈ L when started as follows:

1 tape 1 is read-once (from left to right) and contains the
certificate u,

2 tape 2 is read-only and contains the input x, and

3 tape 3 is read-write work tape of size O(log|x |).

Proof.

As for the two characterisations of NP, we show one direction by
using a description of an accepting run of the NTM as certificate
and the other direction by guessing the certificate
symbol-by-symbol when we need it.

None of this is in [Sipser2006].

Example

To show once again that PATH ∈ NL we let the certificate for
〈((V ,E), s, t)〉 ∈ PATH be a list [v0, . . . , vk] of nodes forming an
acyclic path from s to t in (V ,E). The verifier checks that

1 v0 = s,

2 (vj , vj+1) ∈ E , for all 0 ≤ j < k , and

3 vk = t.

This takes at most logspace because (a) it suffices to store 2 nodes
and (b) node names are binary representations of 1, . . . , |V |.

Theorem (Immerman-Szelepcsényi)

NL = coNL

Proof.

Show PATH ∈ NL by providing a logspace verifier and certificates.
On input 〈(V ,E), s, t, u〉 our verifier uses two procedures to certify
that:

1 v /∈ Ci given |Ci |
2 |Ci | = c , given |Ci−1|

where C0 = {s} and Ci+1 = Ci ∪ E (Ci), i.e., Ci is the set of nodes
reachable from s in at most i steps.
Applying the second procedure |V | − 1 times yields the number of
nodes reachable from s and the first procedure can then certify
t /∈ C|V |−1.

Proof details I

What can we do with a logspace verifier?

Given v ∈ V and i ≤ |V | we can certify v ∈ Ci .
Same as for PATH plus counting steps.

Given v ∈ V , i ≤ |V |, and |Ci | we can certify v /∈ Ci .

cert = ordered list of |Ci | certificates for the u ∈ Ci .
Check that:

1 each sub-certificate is valid as per the previous
point,

2 certificates are ordered,
3 none of the certified nodes is v , and
4 the number of certificates is |Ci |

Proof details II

Given v ∈ V , i ≤ |V |, and |Ci−1| we can certify v /∈ Ci .

Ordered list of |Ci−1| certificates for the u ∈ Ci−1.
Check that:

1 each sub-certificate is valid as per the previous
point,

2 certificates are ordered,
3 the certified nodes are neither v nor neighbours

of v , and
4 the number of certificates is |Ci−1|.

Proof details III

Given |Ci−1| and c we can certify |Ci | = c.

cert = ordered list of |V | certificates for the v ∈ V of
either v ∈ Ci or v /∈ Ci as described above.
Check that:

1 each sub-certificate is valid as per the previous
points while counting the total number of
certificates and the number of v ∈ Ci certificates

2 Accept if those counts are |V | and c ,
respectively.

	Sublinear Space
	Intro

