COMP4141 Theory of Computation Log Space

Ron van der Meyden

CSE, UNSW

Revision: 2015/05/07

(Credits: M Sipser, K Engelhardt, R van Glabbeek, P Hofner)

Sublinear Space

Consider 2-tape TMs where the tape containing the input tape is read-only.

Change the definition of space complexity to ignore the input tape. (*Tute:* This matters at most for sublinear space.)

Definition $L = SPACE(\log n)$ $NL = NSPACE(\log n)$

Example

 $\{ 0^k 1^k \mid k \in \mathbb{N} \} \in \mathbf{L}$: Use a single binary counter initialised to 0 to first count the 0s up and then the 1s down.

Example

Recall that

 $PATH = \{ \langle G, s, t \rangle \mid t \text{ is reachable from } s \text{ in directed graph } G \}$ is in **P**. For $PATH \in \mathbf{NL}$ we build: $M = \text{"On input } \langle (V, E), s, t \rangle$ ① store $v \leftarrow s$ on the 2nd tape ② repeat up to |V| - 1 times: ③ non-deterministically guess v' with $(v, v') \in E$ ④ if v' = t, accept else store $v \leftarrow v'$ ③ reject."

Whether L = NL is open. Whether $PATH \in L$ is unclear, but the **undirected** version is known to be in L (Reingold 2005).

Log Space Reducibility

Polynomial-time reducibility (\leq_P) is too coarse a measure to define **NL**-completeness. Instead, we'll use *log space reducibility* (\leq_L) based on log space transducers:

Definition

A log space transducer is a 3-tape TM with

a read-only input tape,

a read-write working tape, and

a write-only output tape

that uses only $\mathcal{O}(\log n)$ space on the working tape.

Theorem If $A \leq_{\mathbf{L}} B$ and $B \in \mathbf{L}$, then $A \in \mathbf{L}$.

NL-completeness

Definition

A language *B* is **NL**-complete if $B \in \mathbf{NL}$ and for every $A \in \mathbf{NL}$ we have $A \leq_{\mathbf{L}} B$.

Theorem

PATH is NL-complete.

Corollary	
$NL\subseteqP$	J

Certificate Definition of NL

Recall that **NP** is the class of languages for which **P** verifiers exist. A similar characterisation can be given for **NL**.

Theorem

 $L \in \mathbf{NL}$ if L has a logspace verifier, that is, a 3-tape TM M and a polynomial p such that for all x there exists a certificate u of size p(|x|) and M accepts iff $x \in L$ when started as follows:

- tape 1 is read-once (from left to right) and contains the certificate u,
- 2 tape 2 is read-only and contains the input x, and
- tape 3 is read-write work tape of size $O(\log |x|)$.

Proof.

As for the two characterisations of **NP**, we show one direction by using a description of an accepting run of the NTM as certificate and the other direction by guessing the certificate symbol-by-symbol when we need it.

None of this is in [Sipser2006].

Example

To show once again that $PATH \in \mathbf{NL}$ we let the certificate for $\langle ((V, E), s, t) \rangle \in PATH$ be a list $[v_0, \ldots, v_k]$ of nodes forming an acyclic path from s to t in (V, E). The verifier checks that

•
$$v_0 = s$$
,
• $(v_j, v_{j+1}) \in E$, for all $0 \le j < k$, and
• $v_k = t$.

This takes at most logspace because (a) it suffices to store 2 nodes and (b) node names are binary representations of $1, \ldots, |V|$.

Theorem (Immerman-Szelepcsényi)

NL = coNL

Proof.

Show $\overline{PATH} \in \mathbf{NL}$ by providing a logspace verifier and certificates. On input $\langle (V, E), s, t, u \rangle$ our verifier uses two procedures to certify that:

- $v \notin C_i$ given $|C_i|$
- **2** $|C_i| = c$, given $|C_{i-1}|$

where $C_0 = \{s\}$ and $C_{i+1} = C_i \cup E(C_i)$, i.e., C_i is the set of nodes reachable from s in at most i steps.

Applying the second procedure |V| - 1 times yields the number of nodes reachable from *s* and the first procedure can then certify $t \notin C_{|V|-1}$.

Proof details I

What can we do with a logspace verifier?

Given $v \in V$ and $i \leq |V|$ we can certify $v \in C_i$. Same as for *PATH* plus counting steps.

Given $v \in V$, $i \leq |V|$, and $|C_i|$ we can certify $v \notin C_i$.

cert = ordered list of $|C_i|$ certificates for the $u \in C_i$. Check that:

- each sub-certificate is valid as per the previous point,
- certificates are ordered,
- **(3)** none of the certified nodes is v, and
- the number of certificates is $|C_i|$

Proof details II

Given $v \in V$, $i \leq |V|$, and $|C_{i-1}|$ we can certify $v \notin C_i$.

Ordered list of $|C_{i-1}|$ certificates for the $u \in C_{i-1}$. Check that:

- each sub-certificate is valid as per the previous point,
- 2 certificates are ordered,
- the certified nodes are neither v nor neighbours of v, and
- the number of certificates is $|C_{i-1}|$.

Proof details III

Given $|C_{i-1}|$ and c we can certify $|C_i| = c$.

cert = ordered list of |V| certificates for the $v \in V$ of either $v \in C_i$ or $v \notin C_i$ as described above. Check that:

- each sub-certificate is valid as per the previous points while counting the total number of certificates and the number of v ∈ C_i certificates
- Accept if those counts are |V| and c, respectively.