COMP4141 Theory of Computation Oracle machines & Turing Reducibility

Ron van der Meyden

CSE, UNSW

Revision: 2015/05/13

(Credits: K. Engelhardt, M Sipser, C Papadimitriou, R. van Glabbeek, P Hofner)

Definition

An *oracle* for a language B is an external device that is capable of deciding B.

An *oracle TM* is a modified TM $M^{?}$ that has the additional capability of querying an oracle.

If an oracle TM M? with an oracle for B decides A then we say that A is *decidable relative to* B.

Language A is *Turing reducible* to language B (or $A \leq_T B$) if A is decidable relative to B.

$\leq_{P} vs \leq_{m} vs \leq_{T}$

 $A \leq_{\mathrm{L}} B \quad \Rightarrow \quad A \leq_{\mathbf{P}} B \quad \Rightarrow \quad A \leq_{\mathrm{m}} B \quad \Rightarrow \quad A \leq_{\mathrm{T}} B$

As for the other two notions of reduction we have

Theorem If $A \leq_T B$ and B is decidable, then A is decidable.

Corollary

If $A \leq_T B$ and A is undecidable, then B is undecidable.

but whereas \leq_m also transferred r.e. this is not the case for \leq_T .

Example

Recall that A_{TM} is r.e. but $\overline{A_{\text{TM}}}$ isn't. But $A_{\text{TM}} \leq_{\text{T}} \overline{A_{\text{TM}}}$ and $\overline{A_{\text{TM}}} \leq_{\text{T}} A_{\text{TM}}$ by simply reversing the oracles' answers.

Definition

Let \mathbf{P}^{O} be the class of languages decided by a polynomial-time oracle TM using oracle O. (Similar for \mathbf{NP}^{O} .)

Example

 $NP \subseteq P^{SAT}$ and $coNP \subseteq P^{SAT}$.

Example

A formula of propositional logic ϕ is *minimal* if there does not exist a shorter formula ψ such that $\phi \Leftrightarrow \psi$ is valid (true for all assignments).

It is not known whether $\overline{MIN-F} \in \mathbf{NP}$ where

MIN-F = { $\langle \phi \rangle \mid \phi$ is a minimal Boolean formula }

but $\overline{MIN-F} \in \mathbf{NP}^{SAT}$ as witnessed by the oracle NTM $M^{?} =$ "On input $\langle \phi \rangle$

1 Non-deterministically guess a smaller formula ψ .

② Ask the oracle whether $\langle \phi \Leftrightarrow \neg \psi \rangle \in SAT$ and if it accepts, reject; otherwise accept."

This problem is not known to be in NP, nor in co-NP.

$\mathbf{P} \stackrel{?}{=} \mathbf{NP}$ and Diagonalisation

Any theorem proved about TMs by using only methods based on

- I string representations of TMs
- II simulation of one TM by another without much overhead in time/space

lifts to oracle machines.

That the resolution of $\mathbf{P} \stackrel{?}{=} \mathbf{NP}$ can not be such a theorem follows from:

Theorem (Baker, Gill, Solovay 1975)

Oracles A and B exist whereby $\mathbf{P}^{A} = \mathbf{N}\mathbf{P}^{A}$ and $\mathbf{P}^{B} \neq \mathbf{N}\mathbf{P}^{B}$.

Proof of $\exists A (\mathbf{P}^A = \mathbf{N}\mathbf{P}^A)$

A could be QBF:

 $NP^{QBF} \subseteq NPSPACE$ = PSPACE $\subseteq P^{QBF}$ $\subseteq NP^{QBF}$

by $QBF \in \mathbf{PSPACE}$ by Savitch's theorem QBF is \mathbf{PSPACE} -complete by $\mathbf{P} \subseteq \mathbf{NP}$ **Proof of** $\exists B (\mathbf{P}^B \neq \mathbf{NP}^B)$

Iteratively construct a B (and its complement B') such that in the end $U_B \in \mathbf{NP}^B \setminus \mathbf{P}^B$ where

$$U_B = \{ 1^n \mid \Sigma^n \cap B \neq \emptyset \} .$$

That $U_B \in \mathbf{NP}^B$ is easy:

"On input 1ⁿ guess $x \in \Sigma^n$ and *accept* iff the oracle confirms $x \in B$."

Proof of $\exists B (\mathbf{P}^B \neq \mathbf{NP}^B)$ cont.

Initially, $B = B' = \emptyset$. For stage *i* of the construction, let M_i^2 be the *i*'th polynomial-time oracle TM running in w.l.o.g. in time n^i .

Let *m* exceed the length of all strings in $B \cup B'$ so far, and also $m^i < 2^m$.

We'll ensure that U_B and M_i^B disagree on 1^m .

- Simulate M[?]_i on 1^m by answering queries x to the oracle with "yes" if x ∈ B, "no" if x ∈ B', otherwise we also answer "no" and add x to B'.
- If M[?]_i accepts 1^m then we put all strings of length m into B'; otherwise, we add the first string of length m neither in B nor in B' to B. Such a string exists because M[?]_i can have queried at most mⁱ < 2^m strings of length m and none were queried ever before.

It follows that no M_i^B will decide U_B and thus $U_B \notin \mathbf{P}^B$.