COMP4141 Theory of Computation Oracle machines \& Turing Reducibility

Ron van der Meyden

CSE, UNSW

Revision: 2015/05/13
(Credits: K. Engelhardt, M Sipser, C Papadimitriou, R. van Glabbeek, P Hofner)

Definition

An oracle for a language B is an external device that is capable of deciding B.
An oracle $T M$ is a modified TM $M^{\text {? }}$ that has the additional capability of querying an oracle.

If an oracle TM $M^{?}$ with an oracle for B decides A then we say that A is decidable relative to B.

Language A is Turing reducible to language B (or $A \leq_{\mathrm{T}} B$) if A is decidable relative to B.

$$
\leq_{\mathbf{P}} \mathbf{V S} \leq_{\mathbf{m}} \mathbf{V S} \leq_{\mathbf{T}}
$$

$$
A \leq_{\mathrm{L}} B \Rightarrow A \leq_{\mathbf{p}} B \Rightarrow A \leq_{\mathrm{m}} B \Rightarrow A \leq_{\mathrm{T}} B
$$

As for the other two notions of reduction we have

Theorem

If $A \leq_{T} B$ and B is decidable, then A is decidable.

Corollary

If $A \leq{ }_{T} B$ and A is undecidable, then B is undecidable.
but whereas \leq_{m} also transferred r.e. this is not the case for \leq_{T}.

Example

Recall that $A_{\text {TM }}$ is r.e. but $\overline{A_{T M}}$ isn't. But $A_{T M} \leq_{T} \overline{A_{T M}}$ and $\overline{A_{\mathrm{TM}}} \leq_{\mathrm{T}} A_{\mathrm{TM}}$ by simply reversing the oracles' answers.

Definition

Let \mathbf{P}^{O} be the class of languages decided by a polynomial-time oracle TM using oracle O. (Similar for $\mathbf{N P}^{\circ}$.)

Example

$\mathbf{N P} \subseteq \mathbf{P}^{S A T}$ and $\mathbf{c o N P} \subseteq \mathbf{P}^{S A T}$.

Example

A formula of propositional logic ϕ is minimal if there does not exist a shorter formula ψ such that $\phi \Leftrightarrow \psi$ is valid (true for all assignments).
It is not known whether $\overline{\overline{M I N-F}} \in \mathbf{N P}$ where

$$
\text { MIN- } F=\{\langle\phi\rangle \mid \phi \text { is a minimal Boolean formula }\}
$$

but $\overline{M I N-F} \in \mathbf{N P}^{S A T}$ as witnessed by the oracle NTM $M^{?}=$ "On input $\langle\phi\rangle$
(1) Non-deterministically guess a smaller formula ψ.
(2) Ask the oracle whether $\langle\phi \Leftrightarrow \neg \psi\rangle \in S A T$ and if it accepts, reject; otherwise accept."

This problem is not known to be in NP, nor in co-NP.

$P \stackrel{?}{=} N P$ and Diagonalisation

Any theorem proved about TMs by using only methods based on I string representations of TMs
II simulation of one TM by another without much overhead in time/space
lifts to oracle machines.
That the resolution of $\mathbf{P} \stackrel{?}{=} \mathbf{N P}$ can not be such a theorem follows from:

Theorem (Baker, Gill, Solovay 1975)
Oracles A and B exist whereby $\mathbf{P}^{A}=\mathbf{N} \mathbf{P}^{A}$ and $\mathbf{P}^{B} \neq \mathbf{N P}^{B}$.

Proof of $\exists A\left(\mathbf{P}^{A}=\mathbf{N} \mathbf{P}^{A}\right)$

A could be QBF:

$$
\begin{aligned}
\mathbf{N P}^{Q B F} & \subseteq \mathbf{N P S P A C E} & & \text { by } Q B F \in \mathbf{P S P A C E} \\
& =\mathbf{P S P A C E} & & \text { by Savitch's theorem } \\
& \subseteq \mathbf{P}^{Q B F} & & Q B F \text { is PSPACE-complete } \\
& \subseteq \mathbf{N P}^{Q B F} & & \text { by } \mathbf{P} \subseteq \mathbf{N P}
\end{aligned}
$$

Proof of $\exists B\left(\mathbf{P}^{B} \neq \mathbf{N P}^{B}\right)$

Iteratively construct a B (and its complement B^{\prime}) such that in the end $U_{B} \in \mathbf{N P}^{B} \backslash \mathbf{P}^{B}$ where

$$
U_{B}=\left\{1^{n} \mid \Sigma^{n} \cap B \neq \emptyset\right\} .
$$

That $U_{B} \in \mathbf{N P}^{B}$ is easy:
"On input 1^{n} guess $x \in \Sigma^{n}$ and accept iff the oracle confirms $x \in B$."

Proof of $\exists B\left(\mathbf{P}^{B} \neq \mathbf{N P}^{B}\right)$ cont.

Initially, $B=B^{\prime}=\emptyset$. For stage i of the construction, let $M_{i}^{\text {? }}$ be the i^{\prime} th polynomial-time oracle TM running in w.l.o.g. in time n^{i}.
Let m exceed the length of all strings in $B \cup B^{\prime}$ so far, and also $m^{i}<2^{m}$.
We'll ensure that U_{B} and M_{i}^{B} disagree on 1^{m}.
(1) Simulate $M_{i}^{\text {? }}$ on 1^{m} by answering queries x to the oracle with "yes" if $x \in B$, "no" if $x \in B^{\prime}$, otherwise we also answer "no" and add x to B^{\prime}.
(2) If $M_{i}^{\text {? }}$ accepts 1^{m} then we put all strings of length m into B^{\prime}; otherwise, we add the first string of length m neither in B nor in B^{\prime} to B. Such a string exists because M_{i} ? can have queried at most $m^{i}<2^{m}$ strings of length m and none were queried ever before.
It follows that no M_{i}^{B} will decide U_{B} and thus $U_{B} \notin \mathbf{P}^{B}$.

