# COMP4141 Theory of Computation Interactive Proof Systems 

Ron van der Meyden

CSE, UNSW

Revision: 2014/05/20
(Credits: K Engelhardt, M Sipser, C Papadimitriou)

BPP can be understood as a probabilistic version of $\mathbf{P}$.
What about a probabilistic version of NP?
Recall the guess and verify formulation of NP:
$A \in \mathbf{N P}$ if there exists a polynomial $p$ and a $\mathbf{P}$ computable function $f: \Sigma^{*} \times \Sigma^{*} \rightarrow\{0,1\}$ such that $x \in A$ iff there exists $y \in \Sigma^{*}$ with $|y| \leq p(|x|)$ such that $f(x, y)=1$.

Here $y$ is a polynomial size certificate for $x \in A$ that can be verified in $\mathbf{P}$.

## $\overline{\text { ISO }}$

## Definition

Call two graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ isomorphic (and write $G_{1} \simeq G_{2}$ ) if there exists a bijection $\pi: V_{1} \longrightarrow V_{2}$ such that $E_{2}=\left\{(\pi(u), \pi(v)) \mid(u, v) \in E_{1}\right\}$.

Theorem
$I S O=\left\{\left\langle G_{1}, G_{2}\right\rangle \mid G_{1} \simeq G_{2}\right\} \in \mathbf{N P}$

## Proof.

The bijection could be the certificate.
The status of $\overline{I S O}$ is unclear as of yet.

Consider the following protocol between a perhaps unreliable but computationally unbounded prover $P$ and a probabilistic $\mathbf{P}$ verifier $V$ who both have $\left\langle G_{1}, G_{2}\right\rangle$ as input.
(1) $N$ times:
(1) $V$ flips a fair coin $c \in\{1,2\}$, reorders $G_{c}$ randomly, and sends the result $X$ to $P$
(2) $P$ replies by declaring the coin (1 or 2)
(2) $V$ accepts if $P$ masters all $N$ challenges; otherwise it rejects.

The probability for $V$ to accept even though $G_{1} \simeq G_{2}$ is $2^{-N}$ because even the smartest $P$ can only guess as long as the coin flips are indeed secret.

Formally, a verifier is a deterministic TM that takes 3 inputs:
(1) an input string $w$ (as usual),
(2) a random string $r$ (to make up for being deterministic),
(3) a partial message history $h$ of the form $m_{1} \# m_{2} \# \ldots m_{i}$ (to recall the conversation with $P$ so far)
to compute a function $V: \Sigma^{*} \times \Sigma^{*} \times \Sigma^{*} \longrightarrow \Sigma^{*} \cup\{$ accept, reject $\}$.
The prover takes input $w$ and partial messages history $h$ to compute $P: \Sigma^{*} \times \Sigma^{*} \longrightarrow \Sigma^{*}$.

For simplicity, assume that messages and random strings are bound by $p(|w|)$ for some polynomial $p$ depending only on $V$.

Write $(V \leftrightarrow P)(w, r)=$ accept if there exists a $h=m_{1} \# \ldots m_{2 k+1}$ whereby
(1) $V\left(w, r, m_{1} \# \ldots m_{2 i}\right)=m_{2 i+1}$ for $0 \leq i \leq k$;
(2) $P\left(w, m_{1} \# \ldots m_{2 i-1}\right)=m_{2 i}$ for $0<i \leq k$; and
(3) $m_{2 k+1}=$ accept.

$$
\operatorname{Pr}[V \leftrightarrow P \text { accepts } w]=\operatorname{Pr}[(V \leftrightarrow P)(w, r)=a c c e p t]
$$

where $r$ is a randomly selected string of length $p(|w|)$.

## Definition

$A \in \mathbf{I P}$ if a prover $P$ and a $\mathbf{P}$ computable verifier $V$ exist such that for every $\tilde{P}$ and $w$
(1) $w \in A$ implies $\operatorname{Pr}[V \leftrightarrow P$ accepts $w] \geq \frac{2}{3}$, and
(2) $w \notin A$ implies $\operatorname{Pr}[V \leftrightarrow \tilde{P}$ accepts $w] \leq \frac{1}{3}$.

## Theorem

$I P=P S P A C E$

## Random Oracles

Consider randomly chosen oracles. It has been shown that if oracle $A$ is chosen randomly, then with probability $1, \mathbf{P}^{A} \neq \mathbf{N} \mathbf{P}^{A}$.
When a question is true for almost all oracles, it is said to be true for a random oracle. This is sometimes taken as evidence that $\mathbf{P} \neq \mathbf{N P}$.

Unfortunately, a statement may be true for a random oracle and false for ordinary TMs at the same time; for example for almost all oracles $A, \mathbf{I P}^{A} \neq \mathbf{P S P A C E}^{A}$, while $\mathbf{I P}=\mathbf{P S P A C E}$.

