COMP4141 Theory of Computation Interactive Proof Systems

Ron van der Meyden

CSE, UNSW

Revision: 2014/05/20

(Credits: K Engelhardt, M Sipser, C Papadimitriou)

BPP can be understood as a probabilistic version of **P**. What about a probabilistic version of **NP**?

Recall the guess and verify formulation of NP:

 $A \in \mathbf{NP}$ if there exists a polynomial p and a \mathbf{P} computable function $f : \Sigma^* \times \Sigma^* \to \{0, 1\}$ such that $x \in A$ iff there exists $y \in \Sigma^*$ with $|y| \le p(|x|)$ such that f(x, y) = 1.

Here y is a polynomial size certificate for $x \in A$ that can be verified in **P**.

ISO

Definition

Call two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ isomorphic (and write $G_1 \simeq G_2$) if there exists a bijection $\pi : V_1 \longrightarrow V_2$ such that $E_2 = \{ (\pi(u), \pi(v)) \mid (u, v) \in E_1 \}.$

Theorem

 $\textit{ISO} = \{ \; \langle \textit{G}_1,\textit{G}_2 \rangle \; \mid \; \textit{G}_1 \simeq \textit{G}_2 \; \} \in \textsf{NP}$

Proof.

The bijection could be the certificate.

The status of \overline{ISO} is unclear as of yet.

Consider the following protocol between a perhaps unreliable but computationally unbounded *prover* P and a probabilistic **P** *verifier* V who both have $\langle G_1, G_2 \rangle$ as input.

- **1** *N* times:
 - V flips a fair coin $c \in \{1, 2\}$, reorders G_c randomly, and sends the result X to P
 - **2** P replies by declaring the coin (1 or 2)
- **2** *V* accepts if *P* masters all *N* challenges; otherwise it rejects.

The probability for V to accept even though $G_1 \simeq G_2$ is 2^{-N} because even the smartest P can only guess as long as the coin flips are indeed secret.

Formally, a verifier is a deterministic TM that takes 3 inputs:

- an input string w (as usual),
- 2 a random string r (to make up for being deterministic),
- **3** a partial message history *h* of the form $m_1 \# m_2 \# \dots m_i$ (to recall the conversation with *P* so far)

to compute a function $V : \Sigma^* \times \Sigma^* \times \Sigma^* \longrightarrow \Sigma^* \cup \{accept, reject\}.$

The prover takes input w and partial messages history h to compute $P : \Sigma^* \times \Sigma^* \longrightarrow \Sigma^*$.

For simplicity, assume that messages and random strings are bound by p(|w|) for some polynomial p depending only on V.

Write $(V \leftrightarrow P)(w, r) = accept$ if there exists a $h = m_1 \# \dots m_{2k+1}$ whereby

- $V(w, r, m_1 \# \dots m_{2i}) = m_{2i+1}$ for $0 \le i \le k$;
- 2 $P(w, m_1 \# \dots m_{2i-1}) = m_{2i}$ for $0 < i \le k$; and

 $\Pr[V \leftrightarrow P \text{ accepts } w] = \Pr[(V \leftrightarrow P)(w, r) = accept]$

where r is a randomly selected string of length p(|w|).

Definition

 $A \in \mathbf{IP}$ if a prover P and a \mathbf{P} computable verifier V exist such that for every \tilde{P} and w

• $w \in A$ implies $\Pr[V \leftrightarrow P \text{ accepts } w] \geq \frac{2}{3}$, and

2
$$w \notin A$$
 implies $\Pr[V \leftrightarrow \tilde{P} \text{ accepts } w] \leq \frac{1}{3}$.

Theorem

IP = PSPACE

Random Oracles

Consider randomly chosen oracles. It has been shown that if oracle A is chosen randomly, then with probability 1, $\mathbf{P}^A \neq \mathbf{NP}^A$.

When a question is true for almost all oracles, it is said to be *true* for a random oracle. This is sometimes taken as evidence that $\mathbf{P} \neq \mathbf{NP}$.

Unfortunately, a statement may be true for a random oracle and false for ordinary TMs at the same time; for example for almost all oracles A, $IP^A \neq PSPACE^A$, while IP = PSPACE.