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Industrial success of Model Checking

From academics to industry in a decade.

Easier to integrate within industrial development cycle:

input from practical design languages (e.g. VHDL, SDL, StateCharts);

expressiveness limited but often sufficient in practice.

Does not require deep training (“push-button” technology).

Easy to explain as exhaustive simulation.

Powerful debugging capabilities:

detect costly problems in early developmemt stages (cfr. Pentium bug);

exhaustive, thus effective (often bugs are also in scaled-down problems).

provides counterexamples (directs the designer to the problem).
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What is a Model Checker

temporal formula

p

qfinite-state model

Model
Checker

G(p -> Fq) yes!

no!

counterexample

p

q
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Description languages for
Kripke Models

A Kripke model is usually presented using a structured programming
language.
Each component is presented by specifying

state variables: determine the state space

�

and the labeling

�
.

initial values for state variables: determine the set of initial states

�

.

instructions: determine the transition relation

�

.

Components can be combined via

synchronous composition,

asynchronous composition.

State explosion problem in model checking:

linear in model size, but model is exponential in number of components.
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Synchronous Composition

Components evolve in parallel.

At each time instant, every component performs a transition.

y = by = a

x = 1x = 0
synchronous

composition

x = 0
y = a

x = 1x = 0

x = 1
y = a

y = b y = b

Typical example: sequential hardware circuits.

Synchronous composition is the default in NuSMV.
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Asynchronous Composition

Interleaving of evolution of components.

At each time instant, one component is selected to perform a transition.

x = 1x = 0
y = b y = b

x = 0
y = a

x = 1
y = a

y = by = a

x = 1x = 0
asynchronous

composition

Typical example: communication protocols.

Asynchronous composition can be represented with NuSMV processes.
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Model Checking

Model Checking is a formal verification technique where...

...the system is represented as Finite State Machine

p

q

1

2

3

4

p

...the properties are expressed as temporal logic formulae

LTL: G(p −> Fq) CTL: AG(p −> AFq)

...the model checking algorithm checks whether all the executions of the
model satisfy the formula.
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CTL Model Checking: Example

Consider a simple system and a specification:

p

q

1

2

3

4

p

AG(p −> AFq)

Idea:

construct the set of states where the formula holds

proceeding “bottom-up” on the structure of the formula

q, AFq, p, p � AF q, AG(p � AF q)
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CTL Model Checking: Example

p

q

1

2

3

4

p

p

q

1

2

3

4

p

"q" "AF q"

AF q is the union of q, AX q, AX AX q, ...
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CTL Model Checking: Example

p

q

1
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4
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p

q
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p

q

1
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p

"p"

"AF q"

"p −> AF q"
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CTL Model Checking: Example

p

q

1

2

3

4

p

p

q

1

2

3

4

p

"p −> AF q" "AG(p −> AF q)"

The set of states where the formula holds is empty!
Counterexample reconstruction is based on the intermediate sets.
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Fix-Point Symbolic Model Checking

Model Checking Algorithm for CTL formulae based on fix-point computation:

traverse formula structure, for each subformula build set of satisfying
states; compare result with initial set of states.

boolean connectives: apply corresponding boolean operation;

on

�� �

, apply preimage computation

��� �
�

� � � � � � � 	 � � � � � 	 	

on

�� �

, compute least fixpoint using

�� � � � � � � � �� � 	

on

�� �

, compute greatest fixpoint using

�� � � � � � �� � � � 	
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Introduction

☞ NuSMV is a symbolic model checker developed by ITC-IRST and UniTN
with the collaboration of CMU and UniGE.

☞ The NuSMV project aims at the development of a state-of-the-art model
checker that:

is robust, open and customizable;

can be applied in technology transfer projects;

can be used as research tool in different domains.

☞ NuSMV is OpenSource:

developed by a distributed community,

“Free Software” license.
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History: NuSMV 1

NuSMV is a reimplementation and extension of SMV.

☞ NuSMV started in 1998 as a joint project between ITC-IRST and CMU:

the starting point: SMV version 2.4.4.

SMV is the first BDD-based symbolic model checker (McMillan, 90).

☞ NuSMV version 1 has been released in July 1999.

limited to BDD-based model checking

extends and upgrades SMV along three dimensions:

functionalities (LTL, simulation)

architecture

implementation

☞ Results:

used for teaching courses and as basis for several PhD theses

interest by industrial companies and academics
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History: NuSMV 2

☞ The NuSMV 2 project started in September 2000 with the following goals:

Introduction of SAT-based model checking

OpenSource licensing

Larger team (Univ. of Trento, Univ. of Genova, ...)

☞ NuSMV 2 has been released in November 2001.

first freely available model checker that combines BDD-based and
SAT-based techniques

extended functionalities wrt NuSMV 1 (cone of influence, improved
conjunctive partitioning, multiple FSM management)

☞ Results: in the first two months:

more than 60 new registrations of NuSMV users

more than 300 downloads
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OpenSource License

The idea of OpenSource:

The System is developed by a distributed community

Notable examples: Netscape, Apache, Linux

Potential benefits: shared development efforts, faster improvements...

Aim: provide a publicly available, state-of-the-art symbolic model checker.

publicly available: free usage in research and commercial applications

state of the art : improvements should be made freely available

Distribution license for NuSMV 2: GNU Lesser General Public License (LGPL):

anyone can freely download, copy, use, modify, and redistribute NuSMV 2

any modification and extension should be made publicly available under
the terms of LGPL (“copyleft”)
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The first SMV program

MODULE main
VAR

b0 : boolean;

ASSIGN
init(b0) := 0;
next(b0) := !b0;

b0!b0

0 1

An SMV program consists of:

☞ Declarations of the state variables (b0 in the example); the state variables
determine the state space of the model.

☞ Assignments that define the valid initial states (init(b0) := 0).

☞ Assignments that define the transition relation (next(b0) := !b0).
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Declaring state variables

The SMV language provides booleans, enumerative and bounded integers as
data types:
boolean:

VAR
x : boolean;

enumerative:
VAR

st :

�

ready, busy, waiting, stopped

�

;

bounded integers (intervals):
VAR

n : 1..8;
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Adding a state variable

MODULE main
VAR

b0 : boolean;
b1 : boolean;

ASSIGN
init(b0) := 0;
next(b0) := !b0; b0

 b1
!b0
 b1

!b1
!b0 b0
!b1

Remarks:

☞ The new state space is the cartesian product of the ranges of the
variables.

☞ Synchronous composition between the “subsystems” for b0 and b1.

!b1

b1
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Declaring the set of initial states

☞ For each variable, we constrain the values that it can assume in the initial
states.

init(<variable>) := <simple_expression> ;

☞ <simple_expression> must evaluate to values in the domain of
<variable>.

☞ If the initial value for a variable is not specified, then the variable can
initially assume any value in its domain.
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Declaring the set of initial states

MODULE main
VAR

b0 : boolean;
b1 : boolean;

ASSIGN
init(b0) := 0;
next(b0) := !b0;

init(b1) := 0;

b0
 b1

!b0
 b1

!b1
!b0 b0
!b1
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Expressions

☞ Arithmetic operators:
+ - * / mod - (unary)

☞ Comparison operators:
= != > < <= >=

☞ Logic operators:
& | xor ! (not) -> <->

☞ Conditional expression:
case

c1 : e1;
c2 : e2;
...
1 : en;

esac

if c1 then e1 else if c2 then e2 else if . . . else
en

☞ Set operators:
{v1,v2,...,vn} (enumeration) in (set inclusion) union (set union)
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Expressions

☞ Expressions in SMV do not necessarily evaluate to one value. In general,
they can represent a set of possible values.

init(var) :=

�

a,b,c

�

union

�

x,y,z

�

;

☞ The meaning of := in assignments is that the lhs can assume
non-deterministically a value in the set of values represented by the rhs.

☞ A constant c is considered as a syntactic abbreviation for {c} (the
singleton containing c).
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Declaring the transition relation

☞ The transition relation is specified by constraining the values that variables
can assume in the next state.

next(<variable>) := <next_expression> ;

☞ <next_expression> must evaluate to values in the domain of
<variable>.

☞ <next_expression> depends on “current” and “next” variables:

next(a) :=

�

a, a+1

�

;
next(b) := b + (next(a) - a) ;

☞ If no next() assignment is specified for a variable, then the variable can
evolve non deterministically, i.e. it is unconstrained.
Unconstrained variables can be used to model non-deterministic inputs to
the system.
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Declaring the transition relation

MODULE main
VAR

b0 : boolean;
b1 : boolean;

ASSIGN
init(b0) := 0;
next(b0) := !b0;

init(b1) := 0;
next(b1) := ((!b0 & b1) | (b0 & !b1));

b0
 b1

!b0
 b1

!b1
!b0 b0
!b1

0 1

2 3
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Specifying normal assignments

☞ Normal assignments constrain the current value of a variable to the
current values of other variables.

☞ They can be used to model outputs of the system.

<variable> := <simple_expression> ;

☞ <simple_expression> must evaluate to values in the domain of the
<variable>.
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Specifying normal assignments

MODULE main
VAR

b0 : boolean;
b1 : boolean;
out : 0..3;

ASSIGN
init(b0) := 0;
next(b0) := !b0;

init(b1) := 0;
next(b1) := ((!b0 & b1) | (b0 & !b1));

out := b0 + 2*b1;

0 1

2 3
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Restrictions on the ASSIGN

For technical reasons, the transition relation must be total, i.e., for every state
there must be at least one successor state.
In order to guarantee that the transition relation is total, the following
restrictions are applied to the SMV programs:

☞ Double assignments rule – Each variable may be assigned only once in
the program.

☞ Circular dependencies rule – A variable cannot have “cycles” in its
dependency graph that are not broken by delays.

If an SMV program does not respect these restrictions, an error is reported by
NuSMV.
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Double assignments rule

Each variable may be assigned only once in the program.
All of the following combinations of assignments are illegal:

init(status) := ready;
init(status) := busy;

next(status) := ready;
next(status) := busy;

status := ready;
status := busy;

init(status) := ready;
status := busy;

next(status) := ready;
status := busy;
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Circular dependencies rule

A variable cannot have “cycles” in its dependency graph that are not
broken by delays.
All the following combinations of assignments are illegal:

x := (x + 1) mod 2;

x := (y + 1) mod 2;
y := (x + 1) mod 2;

next(x) := x & next(x);

next(x) := x & next(y);
next(y) := y & next(x);

The following example is legal, instead:

next(x) := x & next(y);
next(y) := y & x;
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The modulo 4 counter with reset

The counter can be reset by an external “uncontrollable” reset signal.
MODULE main
VAR

b0 : boolean;
b1 : boolean;
reset : boolean;
out : 0..3;

ASSIGN
init(b0) := 0;
next(b0) := case

reset = 1 : 0;
reset = 0 : !b0;

esac;

init(b1) := 0;
next(b1) := case

reset : 0;
1 : ((!b0 & b1) | (b0 & !b1));

esac;

out := b0 + 2*b1;

2

0 1

3
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Modules

An SMV program can consist of one or more module declarations.

MODULE mod
VAR out: 0..9;
ASSIGN next(out) :=

(out + 1) mod 10;
MODULE main

VAR m1 : mod;
m2 : mod;
sum: 0..18;

ASSIGN sum := m1.out + m2.out;

m2m1

main

☞ Modules are instantiated in other modules. The instantiation is performed
inside the VAR declaration of the parent module.

☞ In each SMV specification there must be a module main. It is the top-most
module.

☞ All the variables declared in a module instance are visible in the module in
which it has been instantiated via the dot notation (e.g., m1.out, m2.out).
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Module parameters

Module declarations may be parametric.

MODULE mod(in)
VAR out: 0..9;
...

MODULE main
VAR m1 : mod(m2.out);

m2 : mod(m1.out);
...

m2m1

main

out in

in out

☞ Formal parameters (in) are substituted with the actual parameters
(m2.out, m1.out) when the module is instantiated.

☞ Actual parameters can be any legal expression.

☞ Actual parameters are passed by reference.
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Example: The modulo 8 counter revisited

MODULE counter_cell(tick)

VAR
value : boolean;
done : boolean;

ASSIGN
init(value) := 0;
next(value) := case
tick = 0 : value;
tick = 1 : (value + 1) mod 2;

esac;

done := tick & (((value + 1) mod 2) = 0);

Remarks:

☞ tick is the formal parameter of module counter_cell.
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Example: The modulo 8 counter revisited

MODULE main
VAR

bit0 : counter_cell(1);
bit1 : counter_cell(bit0.done);
bit2 : counter_cell(bit1.done);
out : 0..7;

ASSIGN
out := bit0.value + 2*bit1.value + 4*bit2.value;

Remarks:

☞ Module counter_cell is instantiated three times.

☞ In the instance bit0, the formal parameter tick is replaced with the actual
parameter 1.

☞ When a module is instantiated, all variables/symbols defined in it are
preceded by the module instance name, so that they are unique to the
instance.
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Module hierarchies

A module can contain instances of others modules, that can contain
instances of other modules... provided the module references are not circular.
MODULE counter_8 (tick)

VAR
bit0 : counter_cell(tick);
bit1 : counter_cell(bit0.done);
bit2 : counter_cell(bit1.done);
out : 0..7;
done : boolean;

ASSIGN
out := bit0.value + 2*bit1.value + 4*bit2.value;
done := bit2.done;

MODULE counter_512(tick) -- A counter modulo 512
VAR

b0 : counter_8(tick);
b1 : counter_8(b0.done);
b2 : counter_8(b1.done);
out : 0..511;

ASSIGN
out := b0.out + 8*b1.out + 64*b2.out;
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Specifications

In the SMV language:

☞ Specifications can be added in any module of the program.

☞ Each property is verified separately.

☞ Different kinds of properties are allowed:

Properties on the reachable states

invariants (INVARSPEC)

Properties on the computation paths (linear time logics):

LTL (LTLSPEC)

qualitative characteristics of models (COMPUTE)

Properties on the computation tree (branching time logics):

CTL (SPEC)

Real-time CTL (SPEC)
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Invariant specifications

☞ Invariant properties are specified via the keyword INVARSPEC:

INVARSPEC <simple_expression>

☞ Example:
MODULE counter_cell(tick)

...
MODULE counter_8(tick)

VAR
bit0 : counter_cell(tick);
bit1 : counter_cell(bit0.done);
bit2 : counter_cell(bit1.done);
out : 0..7;
done : boolean;

ASSIGN
out := bit0.value + 2*bit1.value + 4*bit2.value;
done := bit2.done;

INVARSPEC
done <-> (bit0.done & bit1.done & bit2.done)
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LTL specifications

☞ LTL properties are specified via the keyword LTLSPEC:

LTLSPEC <ltl_expression>

where <ltl_expression> can contain the following temporal operators:
X _ F _ G _ _ U _

☞ A state in which out = 3 is eventually reached.

LTLSPEC F out = 3

☞ Condition out = 0 holds until reset becomes false.

LTLSPEC (out = 0) U (!reset)

☞ Even time a state with out = 2 is reached, a state with out = 3 is
reached afterwards.

LTLSPEC G (out = 2 -> F out = 3)
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Quantitative characteristics computations

It is possible to compute the minimum and maximum length of the paths
between two specified conditions.

☞ Quantitative characteristics are specified via the keyword COMPUTE:

COMPUTE
MIN/MAX [ <simple_expression> , <simple_expression> ]

☞ For instance, the shortest path between a state in which out = 0 and a
state in which out = 3 is computed with

COMPUTE
MIN [ out = 0 , out = 3]

☞ The length of the longest path between a state in which out = 0 and a
state in which out = 3.

COMPUTE
MAX [ out = 0 , out = 3]
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CTL properties

☞ CTL properties are specified via the keyword SPEC:
SPEC <ctl_expression>

where <ctl_expression> can contain the following temporal operators:
AX _ AF _ AG _ A[_ U _]
EX _ EF _ EG _ E[_ U _]

☞ It is possible to reach a state in which out = 3.
SPEC EF out = 3

☞ A state in which out = 3 is always reached.
SPEC AF out = 3

☞ It is always possible to reach a state in which out = 3.
SPEC AG EF out = 3

☞ Even time a state with out = 2 is reached, a state with out = 3 is
reached afterwards.

SPEC AG (out = 2 -> AF out = 3)
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Bounded CTL specifications

NuSMV provides bounded CTL (or real-time CTL) operators.

☞ There is no state that is reachable in 3 steps where out = 3 holds.

SPEC
!EBF 0..3 out = 3

☞ A state in which out = 3 is reached in 2 steps.

SPEC
ABF 0..2 out = 3

☞ From any reachable state, a state in which out = 3 is reached in 3 steps.

SPEC
AG ABF 0..3 out = 3
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Fairness Constraints

Let us consider again the counter with reset.

☞ The specification AF out = 1 is not verified.

☞ On the path where reset is always 1, then the system loops on a state
where out = 0, since the counter is always reset:
reset = 1,1,1,1,1,1,1...

out = 0,0,0,0,0,0,0...

☞ Similar considerations hold for the property AF out = 2. For instance,
the sequence:
reset = 0,1,0,1,0,1,0...

generates the loop:
out = 0,1,0,1,0,1,0...

which is a counterexample to the given formula.
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Fairness Constraints

☞ NuSMV allows to specify fairness constraints.

☞ Fairness constraints are formulas which are assumed to be true infinitely
often in all the execution paths of interest.

☞ During the verification of properties, NuSMV considers path quantifiers to
apply only to fair paths.

☞ Fairness constraints are specified as follows:

FAIRNESS <simple_expression>
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Fairness Constraints

☞ With the fairness constraint

FAIRNESS
out = 1

we restrict our analysis to paths in which the property out = 1 is true
infinitely often.

☞ The property AF out = 1 under this fairness constraint is now verified.

☞ The property AF out = 2 is still not verified.

☞ Adding the fairness constraint out = 2, then also the property
AF out = 2 is verified.
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The DEFINE declaration

In the following example, the values of variables out and done are defined by
the values of the other variables in the model.

MODULE main -- counter_8
VAR

b0 : boolean;
b1 : boolean;
b2 : boolean;
out : 0..8;
done : boolean;

ASSIGN
init(b0) := 0;
init(b1) := 0;
init(b2) := 0;

next(b0) := !b0;
next(b1) := (!b0 & b1) | (b0 & !b1);
next(b2) := ((b0 & b1) & !b2) | (!(b0 & b1) & b2);

out := b0 + 2*b1 + 4*b2;
done := b0 & b1 & b2;
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The DEFINE declaration

DEFINE declarations can be used to define abbreviations:

MODULE main -- counter_8
VAR

b0 : boolean;
b1 : boolean;
b2 : boolean;

ASSIGN
init(b0) := 0;
init(b1) := 0;
init(b2) := 0;

next(b0) := !b0;
next(b1) := (!b0 & b1) | (b0 & !b1);
next(b2) := ((b0 & b1) & !b2) | (!(b0 & b1) & b2);

DEFINE
out := b0 + 2*b1 + 4*b2;
done := b0 & b1 & b2;
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The DEFINE declaration

☞ The syntax of DEFINE declarations is the following:

DEFINE <id> := <simple_expression> ;

☞ They are similar to macro definitions.

☞ No new state variable is created for defined symbols (hence, no added
complexity to model checking).

☞ Each occurrence of a defined symbol is replaced with the body of the
definition.
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Arrays

The SMV language provides also the possibility to define arrays.

VAR

x : array 0..10 of boolean;

y : array 2..4 of 0..10;

z : array 0..10 of array 0..5 of

�
red, green, orange

�

;

ASSIGN

init(x[5]) := 1;

init(y[2]) :=

�

0,2,4,6,8,10
�

;

init(z[3][2]) :=

�

green, orange

�

;

☞ Remark: Array indexes in SMV must be constants.
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Records

Records can be defined as modules without parameters and assignments.

MODULE point
VAR x: -10..10;

y: -10..10;

MODULE circle
VAR center: point;

radius: 0..10;

MODULE main
VAR c: circle;
ASSIGN
init(c.center.x) := 0;
init(c.center.y) := 0;
init(c.radius) := 5;
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The constraint style of model specification

The following SMV program:
MODULE main
VAR request : boolean;

state :

�

ready,busy

�

;
ASSIGN

init(state) := ready;
next(state) := case

state = ready & request : busy;
1 :

�
ready,busy

�

;
esac;

can be alternatively defined in a constraint style, as follows:
MODULE main
VAR request : boolean;

state :

�

ready,busy
�
;

INIT
state = ready

TRANS
(state = ready & request) -> next(state) = busy
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The constraint style of model specification

☞ The SMV language allows for specifying the model by defining constraints on:

the states:
INVAR <simple_expression>

the initial states:
INIT <simple_expression>

the transitions:
TRANS <next_expression>

☞ There can be zero, one, or more constraints in each module, and constraints
can be mixed with assignments.

☞ Any propositional formula is allowed in constraints.

☞ Very useful for writing translators from other languages to NuSMV.

☞ INVAR p is equivalent to INIT p and TRANS next(p), but is more efficient.

☞ Risk of defining inconsistent models (INIT p & !p).
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Assignments versus constraints

☞ Any ASSIGN-based specification can be easily rewritten as an equivalent
constraint-based specification:
ASSIGN
init(state) :=

�

ready,busy

�

; INIT state in

�

ready,busy

�

next(state) := ready; TRANS next(state) = ready
out := b0 + 2*b1; INVAR out = b0 + 2*b1

☞ The converse is not true: constraint
TRANS

next(b0) + 2*next(b1) + 4*next(b2) =
(b0 + 2*b1 + 4*b2 + tick) mod 8

cannot be easily rewritten in terms of ASSIGNs.
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Assignments versus constraints

☞ Models written in assignment style:

by construction, there is always at least one initial state;

by construction, all states have at least one next state;

non-determinism is apparent (unassigned variables, set assignments...).

☞ Models written in constraint style:

INIT constraints can be inconsistent :

inconsistent model: no initial state,

any specification (also SPEC 0) is vacuously true.

TRANS constraints can be inconsistent :

the transition relation is not total (there are deadlock states),

NuSMV detects and reports this case.

non-determinism is hidden in the constraints:
TRANS (state = ready & request) -> next(state) = busy
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Synchronous composition

☞ By default, composition of modules is synchronous:
all modules move at each step.

MODULE cell(input)
VAR

val :

�

red, green, blue

�

;
ASSIGN

next(val) :=

�

val, input

�

;

MODULE main
VAR

c1 : cell(c3.val);
c2 : cell(c1.val);
c3 : cell(c2.val);

val

val

val

c3

c1

c2
input

input

input
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Synchronous composition

A possible execution:

step c1.val c2.val c3.val

0 red green blue

1 red red green

2 green red green

3 green red green

4 green red red

5 red green red

6 red red red

7 red red red

8 red red red

9 red red red

10 red red red
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Asynchronous composition

☞ Asynchronous composition can be obtained using keyword process.

☞ In asynchronous composition one process moves at each step.

☞ Boolean variable running is defined in each process:

it is true when that process is selected;

it can be used to guarantee a fair scheduling of processes.
MODULE cell(input)

VAR
val :

�

red, green, blue

�

;
ASSIGN

next(val) :=

�

val, input

�

;
FAIRNESS

running

MODULE main
VAR

c1 : process cell(c3.val);
c2 : process cell(c1.val);
c3 : process cell(c2.val);
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Asynchronous composition

A possible execution:

step running c1.val c2.val c3.val

0 - red green blue

1 c2 red red blue

2 c1 blue red blue

3 c1 blue red blue

4 c2 blue red blue

5 c3 blue red red

6 c2 blue blue red

7 c1 blue blue red

8 c1 red blue red

9 c3 red blue blue

10 c3 red blue blue
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NuSMV resources

☞ NuSMV home page:

http://nusmv.irst.itc.it/

☞ Mailing lists:

nusmv-users@irst.itc.it (public discussions)

nusmv-announce@irst.itc.it (announces of new releases)

nusmv@irst.itc.it (the development team)

to subscribe: http://nusmv.irst.itc.it/mail.html

☞ Course notes and slides:

http://nusmv.irst.itc.it/courses/
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