Algorithmic Verification

Comp4151 Lecture 11-B Ansgar Fehnker

Overview

Model Checking Approaches

- Explicit State Model Checking
- Symbolic Model Checking
- Bounded Model Checking
- Automatic Abstraction Refinement
- Correctness of software, hardware and protocols
- Correctness for finite state systems

Overview

Next two weeks

Model checking real-time systems

Themes • Decidability

- Efficient implementations and data structures
- Application examples

Today

- Decidability and region equivalence
 Symbolic model checking for the region automaton
 Other decidability results

Recap

Timed automata

- A finite control graph with locations and edges
- Instantaneous transitions along edges, delays while in location
- Real-valued clocks, that increase at the same rate
- Constraints on clocks as guard on edges
- Clock resets to measure time between transitions

x:=0, y:=0

 $x \geq 10$

- Invariants in locations to enforce progress
- Labels for synchronization

guard

reset

Γ label

y≥1

on x = 0y:=0

invariant

Introduction

Region Automaton

- Proposed by Alur and Dill [AD94,AD91]
- Provides a finitie abstraction
- Used for many other decidability results

Reachability

Check if a given location in a given TA is reachable from the initial state

Decidability

• Does there exist an algorithm that decides for any TA A and a location /, if / is reachable in A or not.

Compd151 Ane our Eeboker

Region Equivalence

Forth observation

• The value of a clock is irrelevant once it exceeds the biggest constant

Equivalence

- Define a integer grid on clock valuations
- Divide each cell along its diagonals frac(v(x))=frac(v(y))
- Divide the cells into vertices, edges, diagonals, and open simplices
 Bound the partition using the biggest constant in guards and invariants

$(l,v) \approx (l',v')$ iff

- / = l' and $\forall x \in \mathbb{C}$. $\mathbf{v}(\mathbf{x}) \leq \mathbf{c}_{\mathbf{x}} \Rightarrow \lfloor v(x) \rfloor = \lfloor v'(x) \rfloor$
- $\forall x, y \in \mathbb{C}$. $\mathbf{v}(\mathbf{x}) \leq \mathbf{c}_{\mathbf{x}} \land \mathbf{v}(\mathbf{y}) \leq \mathbf{c}_{\mathbf{y}} \Rightarrow (\operatorname{frac}(\mathbf{v}(\mathbf{x})) \leq \operatorname{frac}(\mathbf{v}(\mathbf{y})) \Leftrightarrow \operatorname{frac}(\mathbf{v}'(\mathbf{x})) \leq \operatorname{frac}(\mathbf{v}'(\mathbf{y})))$
- $\forall x \in \mathbb{C}$. $\mathbf{v}(\mathbf{x}) \leq \mathbf{c}_{\mathbf{x}} \Rightarrow (\operatorname{frac}(\mathbf{v}(\mathbf{x})) = 0 \Leftrightarrow \operatorname{frac}(\mathbf{v}'(\mathbf{x})) = 0)$

Overview

Next two weeks

Model checking real-time systems

Themes

- Decidability
- Efficient implementations and data structures Application examples

Today

- Decidability and region equivalence
- Symbolic model checking for the region automaton
- Other decidability results

Symbolic Semantics

Use clock equivalence to define a finite region automaton. 1st step: represent regions symbolically:

Given a set of clocks C_r with maximal constants c_{xr} we represent a region as a triple $H=(h_{\mathcal{C}}, \dots, \mathcal{C}_{k}], \mathcal{C}_{>})$ with

- *h*: $C \rightarrow$ Nat that assigns to each clock x a natural number $\leq c_{x'}$
- C_0 ..., C_k and $C_>$ define a partition of the set of clocks.
- C₀ and C_> may be empty.

Let \mathcal{H} be the finite set of all possible H given the set of clocks and the maximal constants.

Symbolic Semantics

A clock valuation $v \in (h_{\ell}[C_{0},...,C_{k}], C_{\ell})$ if

- $\lfloor v(x) \rfloor = h(x)$ for $x \notin C_>$
- $\lfloor v(x) \rfloor > c_x$ for $x \in C_>$ frac(v(x)) = 0 for $x \in C_0$
- frac(v(x)) = frac(v(y)) for $x, y \in C_i$
- frac(v(x)) < frac(v(y)) for $x \in C_i$, $y \in C_j$ i < j

Equivalent clock valuations

• $v, v' \in (h_{\ell}[C_{\ell'}, \dots, C_{k}], C_{r})$ implies $(l, v) \approx (l, v')$

Symbolic Semantics

Use clock equivalence to define a finite region automaton. 2st step: define symbolic operations on regions

Reset

- Given a region H = $(h_{i}[C_{0},...,C_{k}], C_{>})$ and $x \in C_{i}$ $\begin{aligned} &\text{if i=0 then } reset(H, x) = (h'_{1}[C_{0}...,C_{k}], C_{2}) \text{ with } H = h[x=0] \\ &\text{if } 0 \text{ ten } reset(H, x) = (h'_{1}[C_{0}...,C_{k}], C_{2}) \text{ with } H = h[x=0] \\ &\text{ with } h' = h[x=0], C_{0}' = C_{0} \cup \{x\} \\ &\text{ otherwise } reset(H, x) = (h'_{1}[C'_{0}...,C'_{k'},C'_{k'}], C_{2}) \end{aligned}$

 - with h' = h[x=0], $C_i' = C_i | \{x\}$, and $C_0' = C_0 \cup \{x\}$

Symbolic Semantics

Use clock equivalence to define a finite region automaton. 2^{st} step: define symbolic operations on regions

Delay

- Given a region H = $(h, [C_0, ..., C_k], C_>)$
- if $C_0 \neq \emptyset$ then
 - $delay(H) = (h, [\emptyset, C'_{0'}, C_{1'}, \dots, C_k], C_{>}]) \text{ with }$
 - $C_0' = C_0 \setminus \{x \mid h(x) = c_x\}$ and $C_{>}' = C_{>} \cup \{x \mid h(x) = c_x\}$
 - if $C_0 = \emptyset$ and k>0 then
- $\begin{aligned} delay(H) &= (h'_{i}[C_{k},C_{0},...,C_{k:P}], C_{>}]) \text{ with} \\ h'(x) &= h(x)+1 \text{ if } x \in C_{k} \text{ and } h'(x) = h(x) \text{ otherwise.} \end{aligned}$
- $n(x) = n(x) + 1 \text{ if } x \in C_k \text{ and } n(x) = n(x) \text{ otherwis}$ • otherwise (if all clocks in C_2)
 - delay(H) = H

Symbolic Semantics

Definition

The region semantics of a timed automaton $A = (Loc_{,l_{O}}\Sigma, E, Inv)$ is given as a transition system RA(A) with • set of states $S = \{ (I, H) | I \in Loc, H \in \mathcal{H} \}$

- initial state $s_0 = (I_0, (\mathbf{0}_r[\mathcal{C}]_r \emptyset))$
- transition relation $R \subseteq S \times \Sigma \cup \{ \delta \} \times S$ that contains the following

discrete transitions $(I,H) __{\sigma}$ (I',H') if $\exists (I,g,\sigma,r,I') \in E \text{ s.t. } H|= g, H' |= Inv(I') \text{ and } H'=reset(H,r)$

delay transitions

(I,H) ______ (I,H') if H' |= Inv(I) and H'=delay(H)

Finitely many states and transitions!

Symbolic Semantics

Useful theorem

Given a location / of timed automaton A, it is reachable in TS(A) iff it is reachable in RA(A).

Sketch of proof

``=>″

Given an execution $(l_0,v_0)~(\underline{}~\cup~\underline{}~)^*~(l,v)$ there exist a symbolic execution $(l_0,H_0)~(\underline{}~\cup~\underline{}~)^*~(l,H)$ with $v\in H$

``<="

Model Checking

Forward reachability

- Start with the initial state (λ₀(**0**, C_pØ)) of the region automaton
- · Explore the state space using the transition relation until either
 - A fix-point has been reached, or
 - The target location / has been reached.
- Search orders are DFS, BFS, random DFS,

Backward reachability

- Start with all regions in the target location
- Explore the state space using the inverse transition relation until either
 - A fix-point has been reached
 - The initial state (h, (0, C,Ø)) has been reached

Decidability for Timed Automata

Other positive results

- TCTL model checking for timed automata is decidable • $\phi ::= \rho | \alpha | \neg \phi | \phi \lor \phi | z in \phi | \mathbf{A} [\phi \mathbf{U} \phi] | \mathbf{E} [\phi \mathbf{U} \phi]$
- Emptiness of untimed language is decidable
- Is the language accepted by an TA empty? (reachability, Buechi-like acceptance)
- Un-timed language inclusion
- Timed bisimulation is decidable
- Two TAs are bismilar iff they perform the same actions in bisimilar states they reach bisimilar states.
- Untimed bisimulation is decidable

Decidability for Timed Automata

Negative Results

- The universality problem is undecidable.
- Does an TA accept all timed words?
- Timed language inclusion is undecidable.
- Timed automata are not determinzable nor complementable
- The following leads to undecidability:
 - Decrementing clocks
 - Incrementing clocks
 - Linear expressions as guards
 - Guards that compare clocks with irrational constants
- Stop-watches (i.e. clocks that can have rates 0 or 1)
 However there are subclasses of TA such that make of these problems decidable.

28

regions