
1

Comp4151 Ansgar Fehnker

Algorithmic Verification

Comp4151

Lecture 11-B

Ansgar Fehnker

Comp4151 Ansgar Fehnker

Overview

Model Checking Approaches

� Explicit State Model Checking

� Symbolic Model Checking

� Bounded Model Checking

� Automatic Abstraction Refinement

� Correctness of software, hardware and protocols

� Correctness for finite state systems

Comp4151 Ansgar Fehnker

Overview

Next two weeks

Model checking real-time systems

Themes
�Decidability
� Efficient implementations and data structures
� Application examples

Today
�Decidability and region equivalence
� Symbolic model checking for the region automaton
�Other decidability results

Comp4151 Ansgar Fehnker

Recap

Timed automata

� A finite control graph with locations and edges

� Instantaneous transitions along edges, delays while in location

� Real-valued clocks, that increase at the same rate

� Constraints on clocks as guard on edges

� Clock resets to measure time between transitions

� Invariants in locations to enforce progress

� Labels for synchronization

l0 l1
x ≤ 12x:=0, y:=0

y≥1
on
x:=0
y:=0

x ≥ 10

on

on

guard

label

reset

invariant

2

Comp4151 Ansgar Fehnker

Recap

Biphase mark protocol

� Protocol and model correct if certain locations are not reachable

� Problems

� The state space is infinite: S = { (l,v) | l ∈ Loc, v |= Inv(l), v: C→ RRRR≥≥≥≥0 }
� The transition relation is infinite: R ⊆ S x Σ ∪ RRRR≥≥≥≥0 x S

T3T2T1

Error

T0 get!
in := 1

get!
buf := in,
in := 1

out != in
put?put?

get!
in := 0

out == in
put?

get!
buf := in,
in := 0

out == buf
put?

out != buf
put?

get!

location not
reachable if modelled

correctly

location not
reachable if protocol

is correct

Comp4151 Ansgar Fehnker

Introduction

Region Automaton

� Proposed by Alur and Dill [AD94,AD91]

� Provides a finitie abstraction

� Used for many other decidability results

Reachability
� Check if a given location in a given TA is reachable from the
initial state

Decidability

� Does there exist an algorithm that decides for any TA A and a
location l, if l is reachable in A or not.

Comp4151 Ansgar Fehnker

Preliminaries

Constraints

Given a set of Clocks C let Ψ (C) be defined by

φ:= φ ∧ φ | ¬ φ | x ≤ n | x < n | x - y ≤ m | x – y < m

where x, y ∈ C, n ∈ N , N , N , N , m ∈ ZZZZ

Finite control graph

Timed automata (Loc,l0,Σ,E,Inv) has A finite set of locations Loc
and a finite set of edges E.

Infinite transition system

The underlying timed transition system (S,s0,R) has an infinite
set of states and an infinite number of transitions

no diagonal
constraintscomparison

with integers

Comp4151 Ansgar Fehnker

Approach

Given a TA (Loc,l0,Σ,E,Inv) with underlying TTS (S,s0,R)

� Define an equivalence relation ≈ on clock valuations such that
� Given states (l,v),(l’,v’) of TTS with (l,v) ≈ (l’,v’) we have

location lf is reachable from (l,v) iff lf is reachable from (l’,v’)

� The number of equivalence classes S/≈ is finite

Problems

� How to define such an equivalence relation?

� How to represent an equivalence class?

main problem

secondary
problem

3

Comp4151 Ansgar Fehnker

Region Equivalence

First observation

� All clocks are compared only to integer values

Equivalence

� Define a integer grid on clock valuations

(l,v) ≈ (l’,v’) iff l =l and ∀x∈C. v(x) = v’(x) (?)

Comp4151 Ansgar Fehnker

Region Equivalence

Example

Requirement

(l,v) ≈ (l’,v’) iff

location lf is reachable from (l,v) ⇔ lf is reachable from (l’,v’)

l0 l1

x ≤ 2, y ≥ 1

x

y

x

y

Comp4151 Ansgar Fehnker

Region Equivalence

Second observation

� Need to distinguish between valuations above and below diagonals

Equivalence

� Define a integer grid on clock valuations

� Divide each cell along its diagonals

� Diagonals satisfy frac(v(x))=frac(v(y)))

(l,v) ≈ (l’,v’) iff
� l =l’ and ∀x∈C. v(x) = v’(x)
� ∀x,y∈C. frac(v(x)) ≤ frac(v(y)) ⇔ frac(v’(x)) ≤ frac(v’(y)) (?)

Comp4151 Ansgar Fehnker

Example

Requirement

(l,v) ≈ (l’,v’) iff

location lf is reachable from (l,v) ⇔ lf is reachable from (l’,v’)

Region Equivalence

l0 l1
y:=0

x ≤ 2, y ≤ 1

x

y

x

y

l3

x ≤ 1, y ≥ 1

x

y

4

Comp4151 Ansgar Fehnker

Region Equivalence

Third observation

� It matters whether the value of a clock is an integer

Equivalence

� Define a integer grid on clock valuations

� Divide each cell along its diagonals frac(v(x))=frac(v(y))

� Divide the cells into vertices, edges, diagonals, and open simplices

(l,v) ≈ (l’,v’) iff
� l =l’ and ∀x∈C. v(x) = v’(x)
� ∀x,y∈C. frac(v(x)) ≤ frac(v(y)) ⇔ frac(v’(x)) ≤ frac(v’(y))
� ∀x∈C. frac(v(x)) = 0 ⇔ frac(v’(x)) =0 (?)

Comp4151 Ansgar Fehnker

Region Equivalence

Example

Requirement
(l,v) ≈ (l’,v’) iff

location lf is reachable from (l,v) ⇔ lf is reachable from (l’,v’)

l0 l1

x ≤ 2, y ≥ 1

x

y

x

y

There are countable but infinitely many equivalence classes.

Comp4151 Ansgar Fehnker

Region Equivalence

Forth observation

� The value of a clock is irrelevant once it exceeds the biggest constant

Equivalence

� Define a integer grid on clock valuations

� Divide each cell along its diagonals frac(v(x))=frac(v(y))

� Divide the cells into vertices, edges, diagonals, and open simplices

� Bound the partition using the biggest constant in guards and invariants

(l,v) ≈ (l’,v’) iff
� l =l’ and ∀x∈C. v(x) ≤≤≤≤ cx⇒ v(x) = v’(x)

� ∀x,y∈C. v(x)≤≤≤≤cx ∧∧∧∧ v(y)≤≤≤≤cy⇒⇒⇒⇒ (frac(v(x))≤frac(v(y)) ⇔ frac(v’(x))≤frac(v’(y)))
� ∀x∈C. v(x) ≤≤≤≤ cx⇒⇒⇒⇒ (frac(v(x)) = 0 ⇔ frac(v’(x)) =0)

Comp4151 Ansgar Fehnker

Example

Requirement
� (l,v) ≈ (l’,v’) iff lf is reachable from (l,v) ⇔ lf is reachable from (l’,v’)

� There are finitely many equivalence classes.

� Reachability for timed automata is decidable.

Region Equivalence

l0 l1

x ≤ 2, y ≥ 1

x

y

x

y

line segments

vertices

open simplices

5

Comp4151 Ansgar Fehnker

Overview

Next two weeks

Model checking real-time systems

Themes

�Decidability

� Efficient implementations and data structures

� Application examples

Today

�Decidability and region equivalence

� Symbolic model checking for the region automaton

�Other decidability results
Comp4151 Ansgar Fehnker

Symbolic Semantics

Use clock equivalence to define a finite region automaton.

1st step: represent regions symbolically:

Given a set of clocks C, with maximal constants cx, we represent a region as

a triple H=(h,[C0,…,Ck], C>) with

� h: C→ Nat that assigns to each clock x a natural number ≤ cx,
� C0,…,Ck and C> define a partition of the set of clocks.

� C0 and C> may be empty.

Let H be the finite set of all possible H given the set of clocks and

the maximal constants.

Comp4151 Ansgar Fehnker

Symbolic Semantics

A clock valuation v ∈ (h,[C0,…,Ck], C>) if

� v(x) = h(x) for x ∉ C>
� v(x) > cx for x ∈ C>
� frac(v(x)) = 0 for x ∈ C0
� frac(v(x)) = frac(v(y)) for x,y ∈ Ci
� frac(v(x)) < frac(v(y)) for x ∈ Ci , y ∈ Cj i<j

Equivalent clock valuations

� v,v’ ∈ (h,[C0,…,Ck], C>) implies (l,v) ≈ (l,v’)

Comp4151 Ansgar Fehnker

Symbolic Semantics

Use clock equivalence to define a finite region automaton.

2st step: define symbolic operations on regions

Reset

Given a region H = (h,[C0,…,Ck], C>) and x ∈ C i
� if i=0 then reset(H,x) = (h’,[C0,…,Ck], C>) with h’ = h[x:=0]

� if 0 < i and C i = {x} then reset(H,x) = (h’,[C’0,…, Ci-1 ,C i+1,…,Ck], C>)

with h’ = h[x:=0], C0’ = C0 ∪ {x}

� otherwise reset(H,x) = (h’,[C’0,…,Ci’,…,Ck] C>)

with h’ = h[x:=0], Ci’ = C i \ {x}, and C0’ = C0 ∪ {x}

Given a region H = (h,[C0,…,Ck], C>) and x ∈ C>
� reset(H,x) = (h’,[C’0,…,Ck], C’>)

with h’ = h[x:=0], C’> = C> \ {x}, and C’0 = C0 ∪ {x}

6

Comp4151 Ansgar Fehnker

Symbolic Sematics

x

y

reset(((2,1), [{y}, {x}], ∅), y)
= ((2,0),[{y},{x}], ∅)

reset(((0,1), [{x},{y}], ∅), y)
= ((0,0),[{x,y}], ∅)

reset(((1,0), [∅, {y},{x}], ∅), x)
= ((0,0),[{x},{y}], ∅)

Comp4151 Ansgar Fehnker

Symbolic Semantics

Use clock equivalence to define a finite region automaton.

2st step: define symbolic operations on regions

Delay
Given a region H = (h,[C0,…,Ck], C>)

� if C0 ≠ ∅ then

delay(H) = (h,[∅ ,C’0, C1,…,Ck],C>’]) with

C0’ = C0 \ {x | h(x) = cx } and C>’ = C> ∪ { x | h(x) = cx }

� if C0 = ∅ and k>0 then

delay(H) = (h’,[Ck ,C0 ,…,Ck-1,], C>]) with

h’(x) = h(x)+1 if x ∈ Ck and h’(x)=h(x) otherwise.
� otherwise (if all clocks in C>)

delay(H) = H

Comp4151 Ansgar Fehnker

Symbolic Semantics

x

y

((0,1), [∅, {y}, {x}], ∅)

((1,1), [{x}, {y}], ∅)

((1,1), [∅, {x}, {y}], ∅)

((3,2),[∅], {x, y})

((3,2), [{x}], {y})

((2,2), [∅, {x}], {y})

((1,2), [∅, {x}], {y})((1,2), [{y}, {x}], ∅) ((2,2), [{x}], {y})

Comp4151 Ansgar Fehnker

Symbolic Semantics

Reminder

The operational semantics of a timed automaton A= (Loc,l0,Σ,E,Inv)
is given as a transition system TS(A) with

� set of states S = { (l,v) | l ∈ Loc, v |= Inv(l) }

� initial state s0 = (l0,0)

� transition relation R ⊆ S x Σ ∪ RRRR≥≥≥≥0 x S that contains the following

discrete transitions

(l,v) σ (l‘,v’) if there exist (l,g,σ,r,l’)∈ E s.t. v|= g, and v[r:=0] = v’

delay transitions

(l,v) d (l,v +d) for d ∈ R≥≥≥≥0 if for all 0 ≤ d’ ≤ d holds v + d |= Inv(l)

Infinitely many states and transitions!

7

Comp4151 Ansgar Fehnker

Symbolic Semantics

Definition

The region semantics of a timed automaton A= (Loc,l0,Σ,E,Inv) is given
as a transition system RA(A) with

� set of states S = { (l, H) | l ∈ Loc, H ∈ H }

� initial state s0 = (l0,(0,[C],∅∅∅∅))
� transition relation R ⊆ S x Σ ∪ {δ δ δ δ } x S that contains the following

discrete transitions

(l,H) σ (l‘,H’) if ∃ (l,g,σ,r,l’)∈ E s.t. H|= g, H’ |= Inv(l’) and H’=reset(H,r)

delay transitions

(l,H) δ (l,H’) if H’ |= Inv(l) and H’=delay(H)

Finitely many states and transitions!

Comp4151 Ansgar Fehnker

Symbolic Semantics

Useful theorem

Given a location l of timed automaton A, it is reachable in TS(A)
iff it is reachable in RA(A).

Sketch of proof

“=>”
Given an execution (l0,v0) (d ∪ σ)* (l,v) there exist a
symbolic execution (l0,H0) (δ ∪ σ)* (l,H) with v ∈ H

“<=”

Given a symbolic execution (l0,H0) (ε ∪ σ)* (l,H) there exist
execution (l0,v0) (δ ∪ σ)* (l,v) with v ∈ H

Comp4151 Ansgar Fehnker

A B

Example

cs1 a2b1v:=1 v=1 cs2a1 b2v:=2 v=2

y<1x:=0 y:=0x>1 y>1x<1

Show that A || B can not reach the critical section in location (cs1,cs2)
shared integer variable

(a1, a2,0),
((0,0),[{x,y}], ∅)

(a1, a2,0),
((0,0),[∅,{x,y}], ∅)

(a1, a2,0),
((1,1),[{x,y}], ∅)

(a1, a2,0),
((1,1),[∅],{x,y})

(b1, a2,1)

(a1, b2,2),
((0,0),[{y},{x}], ∅)

(a1, b2,2),
((0,0),[∅, {y},{x}], ∅)

(a1, b2,2),
((1,0),[{x},{y}], ∅)

(a1, b2,2),
((1,0),[∅,{y}], {x})

(a1, b2,2),
((1,1),[{y}], {x})

(a1, b2,2),
((1,1),[∅], {x,y})

(a1, cs2,2),
((1,1),[∅], {x,y})

(b1, a2,1)

(a1, b2,2),
((0,0),[{x,y}], ∅)

Comp4151 Ansgar Fehnker

Model Checking

Forward reachability

� Start with the initial state (l0,(0,C,∅∅∅∅)) of the region automaton
� Explore the state space using the transition relation until either

� A fix-point has been reached, or

� The target location l has been reached.

� Search orders are DFS, BFS, random DFS, ….

Backward reachability

� Start with all regions in the target location

� Explore the state space using the inverse transition relation
until either

� A fix-point has been reached

� The initial state (l0,(0,C,∅∅∅∅)) has been reached

8

Comp4151 Ansgar Fehnker

Decidability for Timed Automata

Other positive results

� TCTL model checking for timed automata is decidable

� φ::= p| α |¬ φ | φ ∨ φ | z in φ | A[φ U φ] | E [φ U φ]
� Emptiness of untimed language is decidable

� Is the language accepted by an TA empty? (reachability, Buechi-like

acceptance)

� Un-timed language inclusion

� Timed bisimulation is decidable

� Two TAs are bismilar iff they perform the same actions in bisimilar
states they reach bisimilar states.

� Untimed bisimulation is decidable

Comp4151 Ansgar Fehnker

Decidability for Timed Automata

Negative Results

� The universality problem is undecidable.

� Does an TA accept all timed words?

� Timed language inclusion is undecidable.

� Timed automata are not determinzable nor complementable

� The following leads to undecidability:

� Decrementing clocks

� Incrementing clocks

� Linear expressions as guards

� Guards that compare clocks with irrational constants

� Stop-watches (i.e. clocks that can have rates 0 or 1)

� However there are subclasses of TA such that make of these
problems decidable.

Comp4151 Ansgar Fehnker

Another useful theorem (almost forgotten)

A timed automaton with diagonal constraints is timed
bisimilar to an TA without diagonal constraints

[Berard,Diekert,Gastin,Petit 1998]

Diagonal Constraints

x-y ≤ c

copy where x-y ≤ c

assume c ≥ 0
copy where x-y > c

x:=0

x:=0

x:=0

y:=0

y:=0

y:=0

x ≤ c

y:=0
x > c

Comp4151 Ansgar Fehnker

Summary

Results
� The reachability problem for timed automata is decidable

� Finite symbolic semantics for the region automaton

� The region-construction useful to prove decidability of other
problems.

However
� Reachability is linear in the size of the region automaton

� The size of the region automaton is

� linear in the number of locations,

� exponential in the number of clocks, and

� exponential in the maximal constants.

� The reachability problem is Pspace complete. x

y

28
regions

OK, it terminates, but will it terminate any time soon?Next week: Efficient model checking of timed automata

