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Overview Recap

Next two weeks Timed automata
= A finite control graph with locations and edges

Model checking real-time systems
9 ¥e = Instantaneous transitions along edges, delays while in location

Themes = Real-valued clocks, that increase at the same rate
= Decidability = Constraints on clocks as guard on edges
= Efficient implementations and data structures = Clock resets to measure time between transitions

= Application examples = Invariants in locations to enforce progress

Today = Labels for synchronization
21

= Decidability and region equivalence
= Symbolic model checking for the region automaton
= Other decidability results
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Error

= Protocol and model correct if certain locations are not reachable

= Problems
= The state space is infinite: S = { (Lv) | IO Loc, v |=Inv(l), v: C» R,p}
= The transition relation is infinite: ROSxZ 0 R,y XS

Introduction

Region Automaton
= Proposed by Alur and Dill [AD94,AD91]
= Provides a finitie abstraction
= Used for many other decidability results

Reachability

= Check if a given location in a given TA is reachable from the
initial state

Decidability

= Does there exist an algorithm that decides for any TA Aand a
location / if /is reachable in A or not.

Preliminaries

Constraints
Given a set of Clocks C let ¥ (C) be defined by
o= 0|~ ¢@x<n|x<n

wherex,yOC,nO N,
- no diagonal
comparison constraints

Finite control graph

Timed automata (Loc/,%,£,Inv) has A finite set of locations Loc
and a finite set of edges £.

with integers

Infinite transition system

The underlying timed transition system (5,5, R) has an infinite
set of states and an infinite number of transitions

Approach

Given a TA (Loc %, E,Inv) with underlying TTS (5,5, R)

= Define an equivalence relation = on clock valuations such that
= Given states (4 v),(/,v) of TTS with (}v)= (/,v) we have

location I; is reachable from (|, v) iff I is reachable from (1,v))
= The number of equivalence classes S/= is finite

Problems

= How to define such an equivalence relation?

= How to represent an equivalence class?
secondary
problem




Region Equivalence

First observation
= All clocks are compared only to integer values

Equivalence
= Define a integer grid on clock valuations

(V) = (Lv') iff 1=/ and OxOC. Lvx)) = Lvix)) @

Region Equivalence

Example

Requirement
(L) =(Iv) iff
location [; is reachable from (l,v) = I; is reachable from (I',v’) x

Region Equivalence

Second observation
= Need to distinguish between valuations above and below diagonals

Equivalence
= Define a integer grid on clock valuations
= Divide each cell along its diagonals
= Diagonals satisfy frac(v(x))=frac(v(y)))

(v =(v) iff
=/ =/ and OxOC. Lvx)) = Lvx))
= [x,yOC. frac(v(x)) < frac(v(y)) = frac(v'(x)) < frac(v'(y)) (@)

Region Equivalence

Example

Requirement
(L) =(Iv) iff
location [; is reachable from (l,v) = I is reachable from (I',v’) x




Region Equivalence

Third observation
= It matters whether the value of a clock is an integer

Equivalence
= Define a integer grid on clock valuations
= Divide each cell along its diagonals frac(v(x))=frac(v(y))
= Divide the cells into vertices, edges, diagonals, and open simplices

(v =(v) iff
=/ =/ and OxOC. Lvx)) = Lvx))
= 0x,yOC. frac(v(x)) < frac(v(y)) = frac(v'(x)) < frac(v'(y))
= Ox0OC. frac(v(x)) =0 = frac(v'(x)) =0 (@)

Region Equivalence

Example
y

4

4 X X
Requirement

0 x<2,y21 o
(Lv) =(I"Vv) iff

location [; is reachable from (l,v) = I is reachable from (I',v’)

‘ There are countable but infinitely many equivalence classes. ‘

d

Region Equivalence

Forth observation
= The value of a clock is irrelevant once it exceeds the biggest constant

Equivalence
= Define a integer grid on clock valuations
= Divide each cell along its diagonals frac(v(x))=frac(v(y))
= Divide the cells into vertices, edges, diagonals, and open simplices
= Bound the partition using the biggest constant in guards and invariants

= v) iff
= /=/"and OxOC. v(x) s ¢, = Lvx)) = Lvw)l
= Ox,yOC. v(x)<c, Ov(y)sc, = (frac(v(x))<frac(v(y)) - frac(v/(x))=frac(v(y)))
= OxOC. v(x) < ¢, = (frac(v(x)) = 0 = frac(v'(x)) =0)

Region Equivalence

Example
y

A= ine segmenss |

| opensimplices

Requirement
= (Lv) =(I'V) iff |;is reachable from (l,v) < I is reachable from (I'v’)
= There are finitely many equivalence classes.
= Reachability for timed automata is decidable. /

v’




Overview

Next two weeks
Model checking real-time systems

Themes
= Decidability
= Efficient implementations and data structures
= Application examples

Today
= Decidability and region equivalence
= Symbolic model checking for the region automaton
= Other decidability results

Symbolic Semantics

A clock valuation v O (A4[C,...,Cl, C.) if

= vx)| = h(x)for xO C,

slvyx) > ¢ forxoOcC,

= frac(v(x)) = 0 for xO G,

= frac(v(x)) = frac(v(y)) for xy OGC

= frac(V(x)) < frac((y)) for xOC,, y OG I<j

Equivalent clock valuations

= v,v'0(hlCp..,Gd, C.) implies (1) = (4V)

Symbolic Semantics

Use clock equivalence to define a finite region automaton.
1st step: represent regions symbolically:

Given a set of clocks G with maximal constants c,, we represent a region as
a triple H=(h,[Cp...,CJ, C.) with

= h: C- Nat that assigns to each clock x a natural number < ¢,
= Cp...,Cand C, define a partition of the set of clocks.
= C,and C, may be empty.

Let <7 be the finite set of all possible # given the set of clocks and
the maximal constants.

Symbolic Semantics

Use clock equivalence to define a finite region automaton.
2st step: define symbolic operations on regions

Reset

Given a region H = (A,[C,...,Gl, C.)and x T C;

if i=0 then resef(H,x) = (h)[C,...,Cl, C.) with #/ = M x=0]

= if 0 <i and G, = {x} then reset(H,x) = (h[C,..., C;,Cpry-- G, Co)
with # = Alx=0], G,’= C,0 {x}

otherwise resef(H,x) = (h,[C}...,C,...,Cl C.)

with # = Alx=0], = G| {x}, and ;"= C,0 {x}

Given a region H = (A,[C,...,.CJ, C.)and x T C,
= resel(Hx) = (h][Ch...,Cl, C°)
with #/ = A{x=0], C% = C, [{x}, and C; = G0 {x+




Symbolic Sematics

reset(((2,2), [y}, &3, 0), y)
=((2.0).[y} b, 0)

Symbolic Semantics

Use clock equivalence to define a finite region automaton.
2st step: define symbolic operations on regions

Delay
Given a region H = (A,[C,...,Gl, C.)

= if G20 then
delay(H) = (A0 ,Cy Cy..,G1,CT) with
G'=C\{x/hx)=crand C.'=C.O{x/Nx) =c}

= if §;=0 and k>0 then
delay(H) = (h11G,,Cy s Gy, GI) with
H(x) = M(x)+1if xJC and H(x)=Hx) otherwise.

= otherwise (if all clocks in C.)
delay(H) = H

Symbolic Semantics

IE’IEJIE’I
chchlch

Symbolic Semantics

Reminder

The operational semantics of a timed automaton A= (Loc /,%,E,Inv)
is given as a transition system 75A) with

= set of states S={ (/) | /0 Loc, v |=In )}

= initial state s, = (/,0)

= transition relation R0 Sx = 0 R,, x S that contains the following

discrete transitions
(I,v) ——— (Iv) if there exist (I,9,0,r, )0 E s.t. v|=g, and v[r:=0] = v/

delay transitions
(v)—9_ (v+d)ford OR,, if forall0<d <dholdsv+d |=Inv()

Infinitely many states and transitions!




Symbolic Semantics

Definition

The region semantics of a timed automaton A= (Lo, /,%,E,InV) is given
as a transition system RA(A) with

= set of states S={ (, H) | /0 Loc, HO <}

= initial state s, = (4,(0,[C],0))

= transition relation RO Sx £ 0 {d} xS that contains the following

discrete transitions

if 0(l,g,0,r, N0 Est. Hl=g, H |= Inv(I') and H'=reset(H,r)

delay transitions

if H' |= Inv(l) and H'=delay(H)

Finitely many states and transitions!

Example

x<1 x U el a y<1 y:=0 y>1
V= 2 vi=2 V=2

shared integer variable

Show that A || B can not reach the critical section in location (cs,,cs,)

(@, a,0), (@, a,0), (a;, ,0),
((0.,0).[{xy}], 0) ((0.0) I {>< yil. 0) (L1).[ixy} ) ((1 1 (x )]

LOpa]

(@, b,2), (a;, b, 2),
((0.0).[{xy}, 0) ((0.0).[{y}{41. 0) ( 0) M {X) (@ 0) {X) M

‘ (@, c5,2), % (@, b,.2),
C (11,101, {xy} ll)[ 1, {xy}) 11) M {X)) 10) M )

Symbolic Semantics

Useful theorem

Given a location /of timed automaton 4, it is reachable in 75(4)
iff it is reachable in RA(A).

Sketch of proof
wosn
Given an execution (lo,Vo) (40 o )" (I,v) there exist a
symbolic execution (lo,Hp) (20
wen
Given a symbolic execution (I,H,) (+—0C —)" (I,H) there exist
execution (lo,v) (2—0 i

Model Checking

Forward reachability
= Start with the initial state (4,(0,G0)) of the region automaton
= Explore the state space using the transition relation until either
= A fix-point has been reached, or
= The target location /has been reached.
= Search orders are DFS, BFS, random DFS, ....

Backward reachability
= Start with all regions in the target location
= Explore the state space using the inverse transition relation
until either
= A fix-point has been reached
= The initial state (4,(0,G0)) has been reached




Decidability for Timed Automata

Other positive results

= TCTL model checking for timed automata is decidable
"e=pak olebo|zing|A[eU ¢ |E[oUq
= Emptiness of untimed language is decidable

= Is the language accepted by an TA empty? (reachability, Buechi-like
acceptance)

= Un-timed language inclusion
= Timed bisimulation is decidable

= Two TAs are bismilar iff they perform the same actions in bisimilar
states they reach bisimilar states.

= Untimed bisimulation is decidable

Decidability for Timed Automata

Negative Results

The universality problem is undecidable.

= Does an TA accept all timed words?
Timed language inclusion is undecidable.
Timed automata are not determinzable nor complementable
The following leads to undecidability:

= Decrementing clocks

= Incrementing clocks

= Linear expressions as guards

= Guards that compare clocks with irrational constants

= Stop-watches (i.e. clocks that can have rates 0 or 1)
However there are subclasses of TA such that make of these
problems decidable.

Diagonal Constraints

Another useful theorem (almost forgotten)

A timed automaton with diagonal constraints is timed
bisimilar to an TA without diagonal constraints

copy where x-y < ¢
y:=0

xy< CO O—XO=O XscC
. o’ o © 7: X>’EO
0= o o x’=9 PRI
@)
assumec=0

copy where x-y > ¢

[Berard, Diekert,Gastin, Petit 1998]

Summary

Results
= The reachability problem for timed automata is decidable
= Finite symbolic semantics for the region automaton

= The region-construction useful to prove decidability of other
problems.

However =
* Reachability is linear in the size of the region automaton | regions
= The size of the region automaton is
= linear in the number of locations,
= exponential in the number of clocks, and
= exponential in the maximal constants.
= The reachability problem is Pspace complete. X

y

Next week: Efficient model checking of timed automata




