

Outline

Model checking real-time systems

Themes

- Decidability
- Efficient implementations and data structures
- Application examples

- Today Efficient reachability
 - Zone semantics
 - Bounded model checking

Decidability for Timed Automata

Negative Results

- The universality problem is undecidable.
- Does an TA accept all timed words?
- Timed language inclusion is undecidable.
- Timed automata are not determinzable nor complementable
- The following leads to undecidability:
 - Decrementing clocks
 - Incrementing clocks
 - Linear expressions as guards
 - Guards that compare clocks with irrational constants
 - Stop-watches (i.e. clocks that can have rates 0 or 1)
- However there are subclasses of TA such that make of these problems decidable.

Recap

Last Monday

- Discrete time (tick semantics) vs real-time (Continuous Time)
- Timed automata for modelling real-time
- Can be used for continuous time models of unreliable digital clocks.

Last Thursday

- Decidability via partitioning into regions of equivalent states
- Symbolic region semantics
- Region automaton tends to be (too) large.

Reachability with Zones

k-Normalization with Difference Constraints

- Given a set of difference constraints *G* that are used in the timed automaton normalize a zone *Z* as follows:
 - Collect all constraints *g* that are either satisfied by all or no valuations in the un-normalized zone *Z*.
 - Split the zone for each constraint in *G* that intersects with the un-normalized zone *Z*.
 - Apply k-normalization to thus obtained zones
 - Add all difference constraints (or their negations) that were collected in the first step to the zone.
- This solves the problem.

Timed Automata Verification

Uppaal

Kronos

- Uses zone semantics
- Model checking TCTL
- Product automaton computed in advance
- On-the fly forward reachability
- Untimed language inclusion
- Optimizations such as
 - active clock reduction
 - convex-hull approximation

Timed Automata Verification

Uppaal

Kronos

- Fully symbolic
- RED
- Region Encoding Diagram, encodes region automaton as BDD
- DDD Difference Decision Diagrams,
- TMV
- quantifier elimination and deciding of constraints from realvalued to
- boolean variables, BDDs, SAT solving, full TCTL support. Mathsat
 - Bounded model checking using hybrid SAT.

Summary

Timed Autoamata

- Framework for modelling systems with real time
- Underlying infinite state transition systems
- Decidability via region automaton construction
- Efficiency via zones and DBMs
- Alternatives to DBMs exists
- First tool using SAT-like techniques