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Outline

Model checking real-time systems 

Themes
� Decidability

� Efficient implementations and data structures

� Application examples

Today
� Efficient reachability

� Zone semantics

� Bounded model checking
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Recap

Timed automata

� A finite control graph with locations and edges

� Instantaneous transitions along edges, delays while in location

� Real-valued clocks, that increase at the same rate

� Constraints on clocks as guard on edges

� Clock resets to measure time between transitions

� Invariants in locations to enforce progress

� Labels for synchronization

l0 l1
x ≤ 12x:=0, y:=0

y≥1
on
x:=0
y:=0

x ≥ 10

on

on

guard

label

reset

invariant
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Recap

The reachability problem for timed automata is decidable

Finite partition  in regions of equivalent clock valuations 

Region automaton with finite semantics

However

Reachability is linear in the size of the region automaton

The size of the region automaton is

� linear in the number of locations, 

� exponential in the number of clocks, and 

� exponential in the encoding of the constants. 

The reachability problem is Pspace complete.
x

y

28 
regions
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Diagonal Constraints

Decidability was shown for diagonal-free TA. But

� A timed automaton with diagonal constraints is timed bisimilar
to an TA without diagonal constraints

[Berard,Diekert,Gastin,Petit 1998]

Recap

x-y ≤ c

copy where x-y ≤ c

assume c ≥ 0
copy where x-y > c

x:=0

x:=0

x:=0

y:=0

y:=0

y:=0

x ≤ c

y:=0
x > c
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Decidability for Timed Automata

Other positive results

� TCTL model checking for timed automata is decidable

� φ::= p| α |¬ φ | φ ∨ φ | z in φ | A[ φ U φ] | E [φ U φ] 
� Emptiness of untimed language is decidable

� Is the language accepted by an TA empty? (reachability, Buechi-like 

acceptance)

� Un-timed language inclusion 

� Timed bisimulation is decidable

� Two TAs are bismilar iff they perform the same actions in bisimilar
states they reach bisimilar states.

� Untimed bisimulation is decidable
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Decidability for Timed Automata

Negative Results

� The universality problem is undecidable.

� Does an TA accept all timed words?

� Timed language inclusion is undecidable.

� Timed automata are not determinzable nor complementable

� The following leads to undecidability:

� Decrementing clocks

� Incrementing clocks 

� Linear expressions as guards

� Guards that compare clocks with irrational constants 

� Stop-watches (i.e. clocks that can have rates 0 or 1) 

� However there are subclasses of TA such that make of these 
problems decidable. 
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Recap

Last Monday

� Discrete time (tick semantics) vs real-time (Continuous Time)

� Timed automata for modelling real-time

� Can be used for continuous time models of unreliable digital 
clocks.

Last Thursday

� Decidability via partitioning into regions of equivalent states

� Symbolic region semantics

� Region automaton tends to be (too) large.
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Zones

An observation

� Guards and invariants are comparisons of clocks and clock 
differences with constants

� Resets are projections

� All clocks proceed at the same rate 

� Delays do not affect difference-constraints

� A clock can exceed any bound by delay

� A system of clock and difference constraints defines a union of 
regions

The zone approach
� Propagate clock and difference constraints, rather than 

regions.
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Zones

Zone
� A zone is solution set to a conjunction of constraints of the form

x ≤ n |  x < n | x  ≥ n | x > n | x - y ≤ m | x – y <  m

n ∈ Nat, m ∈ Int
� Let Z  be the set of all zones

� A region is a zone

� A zone is a convex union of regions

� All invariants and guards are zone

x

y x ≤ 4
x ≥ 1
y ≤ 2
y ≥ 0

y - x ≤ 0
x - y ≤ 2
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Operations on zones

Conjunction

� Let Z, Z’ be two zones then Z ∧ Z’ := Z ∩ Z’

x

y x ≤ 4
x ≥ 1
y ≤ 2
y ≥ 0

y - x ≤ 0
x - y ≤ 2

x ≥ 3
y ≥ 0

x ≤ 4
x ≥ 3
y ≤ 2
y ≥ 0

y - x ≤ 0
x - y ≤ 2

∧ =
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Operations on zones

Reset

� Let Z, x ∈ C then reset(Z,x) ={ v[x:=0] | v ∈ Z }

� Removing all constraints involving x, add x ≤ 0 and x ≥ 0

x

y x ≤ 4
x ≥ 1
y ≤ 2
y ≥ 0

y - x ≤ 0
x - y ≤ 2

reset x

x ≤ 0
x ≥ 0
y ≤ 2
y ≥ 0

y - x ≤ 0
x - y ≤ 2
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Operations on zones

Delay

� Let Z, x ∈ C then delay(Z) ={ v+d | v ∈ Z, d ∈ R≥≥≥≥0 }

� Removing all upper bounds on clocks

x

y x ≤ 4
x ≥ 1
y ≤ 2
y ≥ 0

y - x ≤ 0
x - y ≤ 2

delay

x ≤ 4
x ≥ 1
y ≤ 2
y ≥ 0

y - x ≤ 0
x - y ≤ 2
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Zone Semantics

Definition

The symbolic zone semantics of a timed automaton 

A= (Loc,l0,Σ,E,Inv)  is given as a transition system with

� set of states S = { (l, Z) | l ∈ Loc, Z ∈ Z }

� initial state s0 = (l0,0)
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Zone Semantics

� transition relation R ⊆ S x Σ ∪ { δ δ δ δ } x S  that contains the 
following

discrete transitions

(l,Z)    σ (l‘,Z’) if there exist (l,g,σ,r,l’)∈ E s.t. Z ∩ g 
≠ ∅, Z’ ∩ Inv(l’) ≠ ∅ and Z’=reset(Z ∩ g ,r) ∩ Inv(l’) 

delay transitions

(l,Z)    δ (l,Z’) Z’=delay(Z) ∩ Inv(l) 
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A B

Example

cs1 a2b1v:=1 v=1 cs2a1 b2v:=2 v=2

y<1x:=0 y:=0x>1 y>1x<1

Show that A || B can not reach the critical section in location (cs1,cs2)

(a1, a2,0), 
x=0,y=0, 

y-x≤0, x-y≤0

(b1, a2,1)

(a1, b2,2), 
x≥0,y=0
y-x≤0 

(b1, a2,1)

(a1, b2,2), 
x=0,y=0, 

y-x≤0, x-y≤0

(a1, a2,0), 
x≥0,y≥0, 

y-x≤0, x-y≤0

(a1, b2,2), 
x ≥ 0,y ≥ 0, 
y-x≤0, x-y≤0

(a1, b2,2), 
x≥0,y ≥0

y-x≤0 

(a1, cs2,2), 
x≥0,y >1

y-x≤0 

(a1, cs2,2), 
x ≥ 0,y ≥ 0, 
y-x≤0, x-y≤0

⊆

⊆
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A B

Example

cs1 a2b1v:=1 v=1 cs2a1 b2v:=2 v=2

y<1x:=0 y:=0x>1 y>1x<1

Show that A || B can not reach the critical section in location (cs1,cs2)

(a1, a2,0), 
x=0,y=0, 

y-x≤0, x-y≤0

(b1, a2,1)

(a1, b2,2), 
x≥0,y=0
y-x≤0 

(b1, a2,1)

(a1, b2,2), 
x=0,y=0, 

y-x≤0, x-y≤0

(a1, a2,0), 
x≥0,y≥0, 

y-x≤0, x-y≤0

(a1, b2,2), 
x ≥ 0,y ≥ 0, 
y-x≤0, x-y≤0

(a1, b2,2), 
x≥0,y ≥0

y-x≤0 

(a1, cs2,2), 
x≥0,y >1

y-x≤0 

(a1, cs2,2), 
x ≥ 0,y ≥ 0, 
y-x≤0, x-y≤0

⊆

⊆

(a1, a2,0), 
((0,0),[{x,y}], ∅)

(a1, a2,0), 
((0,0),[{x,y}], ∅)

(a1, a2,0), 
((0,0),[∅,{x,y}], ∅)

(a1, a2,0), 
((0,0),[∅,{x,y}], ∅)

(a1, a2,0), 
((1,1),[{x,y}], ∅)

(a1, a2,0), 
((1,1),[{x,y}], ∅)

(a1, a2,0), 
((1,1),[∅],{x,y})

(a1, a2,0), 
((1,1),[∅],{x,y})

(b1, a2,1)(b1, a2,1)

(a1, b2,2)(a1, b2,2)

(b1, a2,1)(b1, a2,1)

(a1, b2,2)(a1, b2,2)

R
eg

io
n

s
Zo

n
es
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Reachability with Zones 

Forward Reachability

Pass := {}, Wait := {(l 0,Z 0)}
while Wait ≠≠≠≠ {} do

select (l,Z) from Wait
if l=l f 

return “l f reachable”
fi
if Z’ ⊆⊆⊆⊆ Z forall (l’,Z’) in Pass then

add (l,Z) to Pass
forall (m,Z’) such that (l,Z) →→→→ (m,Z’):

add (m,Z’) to Wait
fi

od
return “l f not reachable”
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y

x

Reachability with Zones

Observation

Forward reachability for the zone semantics may not terminate. 

l0

y ≤ 1
l1

x ≥ 2
x:=0
y:=0

y = 1
y := 0

l0

y-x=0, 0 ≤ x ≤ 1

l0
y-x=1, 0 ≤ x ≤ 1

l0
y-x=2, 0 ≤ x ≤ 1

l0

y-x=3, 0 ≤ x ≤ 1

l0

y-x=4, 0 ≤ x ≤ 1

l1

y-x=0, 0 ≤ x 
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Reachability with Zones

k-normalization

Given a closed zone Z

� Remove all constraints x < n, x ≤ n,    
x-y <m and x-y ≤ m where n,m > k(x)

� Replace all constraints x > n, x ≥ n,    
x-y >m and x-y ≥ m where n,m > k(x) 
with x > k(x) and x-y > k(x)

Number of k-normalized zones is 

finite.

l0
y-x=0, 0 ≤ x ≤ 1

l0

y-x=1, 0 ≤ x ≤ 1

l0

y-x=2, 0 ≤ x ≤ 1

l0
y-x=3, 0 ≤ x ≤ 1

l0
y-x=4, 0 ≤ x ≤ 1

l1
y-x=0, 0 ≤ x 

l0
y-x=0, 0 ≤ x ≤ 1

l0

y-x=1, 0 ≤ x ≤ 1

l0

y-x=2, 0 ≤ x ≤ 1

l0

y-x > 2, 0 ≤ x ≤ 1

l1
y-x=0, 0 ≤ x 
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Reachability with Zones

z:=0
y>2
y:=0

x-z<1, z-y<1

w
ith

ou
t 

no
rm

al
iz

at
io

n

x-y = 0
y-z = 0
z-x = 0

x-y = 0
z-x ≤ 0
z-y ≤ 0

x-y > 2
y-z ≤ 0
z-x ≤ 0

x > 2

not 
reachable

w
ith

no
rm

al
iz

at
io

n

x-y = 0
y-z = 0
z-x = 0

x-y = 0
z-x ≤ 0
z-y ≤ 0

x-y > 1
y-z ≤ 0
z-x ≤ 0

x > 1
reachable

oops

oopsAnother observation
� For TAs with diagonal constraints the soundness result is lost.

� Location may be reachable as an artefact of k-normalization.

� Discovered in 2002 by Patricia Bouyer (Timed Automata may cause some 
troubles, Untameable timed automata)

� There are automata (> 3 clocks) such that no sound k-normalization exists
Comp4151 Ansgar Fehnker

Reachability with Zones

k-Normalization with Difference Constraints

� Given a set of difference constraints G that are used in the 
timed automaton normalize a zone Z as follows:

� Collect all constraints g that are either satisfied by all or no 
valuations in the un-normalized zone Z.

� Split the zone for each constraint in G that intersects with 
the un-normalized zone Z.

� Apply k-normalization to thus obtained zones

� Add all difference constraints (or their negations) that were 
collected in the first step to the zone.

� This solves the problem. 
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Efficient operations on zones

Difference Bound Matrices

A compact representation of a minimal set of constraints

� Given a set of constraints on clocks introduce a special 
clock x0 constant to zero

� Represent differences as weighted directed graph [Bellman 
1958, Dill 1989]

x1 - x0 ≤≤≤≤ 1
x2 - x1 ≤≤≤≤ 2
x3 - x2 ≤≤≤≤ 2
x3 - x0 ≤≤≤≤ 9

x1 - x0 ≤≤≤≤ 1
x2 - x1 ≤≤≤≤ 2
x3 - x2 ≤≤≤≤ 2
x3 - x0 ≤≤≤≤ 9

2
x1 x2

x3x0

2

9

1

Space worst O(n 2̂)
practice O(n)

Shortest path
closure
and 
Shortest path 
reduction

2
x1 x2

x3x0

21
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Efficient operations on zones

Difference Bound Matrices

Inclusion check

x1 - x0 ≤≤≤≤ 1
x2 - x1 ≤≤≤≤ 2
x3 - x2 ≤≤≤≤ 2
x3 - x0 ≤≤≤≤ 9

x1 - x0 ≤≤≤≤ 1
x2 - x1 ≤≤≤≤ 2
x3 - x2 ≤≤≤≤ 2
x3 - x0 ≤≤≤≤ 9

2
x1 x2

x3x0

2

9

1

Comparison of
weights

x1 - x0 ≤≤≤≤ 2
x2 - x1 ≤≤≤≤ 3
x2 - x0 ≤≤≤≤ 3
x3 - x2 ≤≤≤≤ 3
x3 - x0 ≤≤≤≤ 7

x1 - x0 ≤≤≤≤ 2
x2 - x1 ≤≤≤≤ 3
x2 - x0 ≤≤≤≤ 3
x3 - x2 ≤≤≤≤ 3
x3 - x0 ≤≤≤≤ 7

?⊆⊆ ⊆⊆

2
x1 x2

x3x0

2

5

1
3

3x1 x2

x3x0

3

7

2
3

3
x1 x2

x3x0

3

6

2
3

⊆⊆ ⊆⊆

4

6
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Efficient operations on zones

Difference Bound Matrices

Emptiness

x1 - x0 ≤≤≤≤ 1
x2 - x1 ≤≤≤≤ 3
x3 - x2 ≤≤≤≤ 2
x0 - x2 ≤≤≤≤-5

x1 - x0 ≤≤≤≤ 1
x2 - x1 ≤≤≤≤ 3
x3 - x2 ≤≤≤≤ 2
x0 - x2 ≤≤≤≤-5

3
x1 x2

x3x0

2
-5

1

negative cycle 
iff
empty solution set

3
x1 x2

x3x0

2
-5

1

Comp4151 Ansgar Fehnker

Efficient operations on zones

Difference Bound Matrices

Conjunction

add new edges

x2 - x1 ≤≤≤≤-1
x2  - x0 ≤≤≤≤ 4

x2 - x1 ≤≤≤≤-1
x2  - x0 ≤≤≤≤ 4

3
x1 x2

x3x0

21 -1x1 - x0 ≤≤≤≤ 1
x2 - x1 ≤≤≤≤ 2
x3 - x2 ≤≤≤≤ 2

x1 - x0 ≤≤≤≤ 1
x2 - x1 ≤≤≤≤ 2
x3 - x2 ≤≤≤≤ 2

2
x1 x2

x3x0

21 -1

4
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Efficient operations on zones

Difference Bound Matrices

Delay

shortest path 
closure and 
removal of upper 
bounds

2
x1 x2

x3x0

21
x1 - x0 ≤≤≤≤ 1
x2 - x1 ≤≤≤≤ 2
x3 - x2 ≤≤≤≤ 2
x3 - x0 ≤≤≤≤ 9

x1 - x0 ≤≤≤≤ 1
x2 - x1 ≤≤≤≤ 2
x3 - x2 ≤≤≤≤ 2
x3 - x0 ≤≤≤≤ 9

2
x1 x2

x3x0

21 3

4

5

Comp4151 Ansgar Fehnker

Efficient operations on zones

Difference Bound Matrices

Reset

remove difference 
constraints and 
set x3 to zero

x1 - x0 ≤≤≤≤ 1
x2 - x1 ≤≤≤≤ 2
x3 - x2 ≤≤≤≤ 2
x3 - x0 ≤≤≤≤ 9

x1 - x0 ≤≤≤≤ 1
x2 - x1 ≤≤≤≤ 2
x3 - x2 ≤≤≤≤ 2
x3 - x0 ≤≤≤≤ 9

2
x1 x2

x3x0

21

2
x1 x2

x3x0

01

0

Now we’ve got everything for an efficient implementation.
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Other Data Structures

Clock difference diagrams

� CDDs are BDD like structures

� Similar data structures are NDDs and IDDs
4

3

2

1

0
1      2      3     4      5      6

4

3

2

1

0
1      2      3     4      5      6

4

3

2

1

0
1      2      3     4      5      6

x

y

true

[4,6][1,3]

[1,3]

x

y

true

[2,3][1,2]

[1,4]

y y

[3,4]

[1,3] [2,4]

x

y

true

[3,4]

[0,2]

[0,1]

x-y x-y

[0,0] [-3,0]
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Example
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Liveness

Safety

Timed Automata Verification

Uppaal

� Supports zone semantics and CDDs

� On-the-fly forward reachability

� Uses optimizations such as

� bit-state hashing

� convex-hull approximation

� active clock reduction

� Simplified specification language

� A[] p

� E<> p

� A<> p

� E[] p

� p imply q (read “p leads to q, i.e p ⇒ A<> q)
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Timed Automata Verification

Liveness in Uppaal

Checking p � q

� Compute the zone automaton, split zones such that they agree 
on validity of p and q.

� p � q does not hold if one can find the following

� A loop such that after reaching p, q will never hold.

� An unbounded zone, such that there exist an infinite 
delay, such that after reaching p, q can not be reached.

� A deadend zone such that after reaching p, q can not be 
reached.

Uppaal contains optimizations such that the splitting is not 

physically done.
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Timed Automata Verification

Uppaal

Kronos

� Uses zone semantics

� Model checking TCTL

� Product automaton computed in advance

� On-the fly forward reachability

� Untimed language inclusion

� Optimizations such as

� active clock reduction

� convex-hull approximation
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Timed Automata Verification

Uppaal

Kronos

Fully symbolic
� RED

� Region Encoding Diagram, encodes region automaton as 
BDD

� DDD

� Difference Decision Diagrams, 

� TMV 

� quantifier elimination and deciding of constraints from real-
valued to

boolean variables, BDDs, SAT solving, full TCTL support.

� Mathsat

� Bounded model checking using hybrid SAT.

…
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Summary

Timed Autoamata

� Framework for modelling systems with real time

� Underlying infinite state transition systems

� Decidability via region automaton construction

� Efficiency via zones and DBMs

� Alternatives to DBMs exists

� First tool using SAT-like techniques


