
1

Comp4151 Ansgar Fehnker

Algorithmic Verification

Comp4151

Lecture 1

Ansgar Fehnker

Comp4151 Ansgar Fehnker

Content

� Welcome

� Who are we?

� Who are you?

� What is the course about?

� What is algorithmic verification?

� What went wrong?

� What is model checking?

� Where did it come from?

� What is it good for?

� What about the course?

Comp4151 Ansgar Fehnker

Who are we?

� Ralf Huuck (LiC)

� Ansgar Fehnker

Comp4151 Ansgar Fehnker

Algorithmic Verification

Verification

informal
spec

systemvalidation

verificationformal
spec

model

fo
rm

al
iz

at
io

n

ab
st

ra
ct

io
n

re
fin

em
en

t

simulation

2

Comp4151 Ansgar Fehnker

Algorithmic Verification

Verification

informal
spec system

formal
spec

model

validation

verification

fo
rm

al
iz

at
io

n

ab
st

ra
ct

io
n

re
fin

em
en

t
simulation

“Traditional” software engineering practice
� Given a spec start coding
� Run test cases
� Code review
� Run more tests

how hackers
do it

“Program testing can be used to show the presence of bugs, but never
to show their absence! “ (Edsger Dijkstra) Comp4151 Ansgar Fehnker

Algorithmic Verification

Verification

informal
spec system

formal
spec

model

validation

verification

fo
rm

al
iz

at
io

n

ab
st

ra
ct

io
n

re
fin

em
en

t

simulation

Model based design
� Given a spec build a model
� Run simulations
� Code/generate code
� Run tests

how a
engineer

would do it

Do you recognize the V?

Comp4151 Ansgar Fehnker

Algorithmic Verification

Verification

informal
spec system

formal
spec

model

validation

verification

fo
rm

al
iz

at
io

n

ab
st

ra
ct

io
n

re
fin

em
en

t

simulation

Correctness by design
� Get formal SPEC
� Derive formal model
� Verify correctness
� Refinement towards
implementation

how computer
scientist

should do it

“The only effective way to raise the confidence level of a program significantly
is to give a convincing proof of its correctness.” (Edsger Dijkstra)

Comp4151 Ansgar Fehnker

Algorithmic Verification

Verification

informal
spec system

formal
spec

model

validation

verification

fo
rm

al
iz

at
io

n

ab
st

ra
ct

io
n

re
fin

em
en

t

simulation

Verification and Validation
� Given SPEC implement
� Derive formal SPEC
� Derive formal model
� Verify correctness

how many
computer

scientist do it

3

Comp4151 Ansgar Fehnker

Algorithmic Verification

Verification

informal
spec system

formal
spec

model

validation

verification

fo
rm

al
iz

at
io

n

ab
st

ra
ct

io
n

re
fin

em
en

t
simulation

This course: How to
� Derive formal SPEC
� Derive formal model
� Verify correctness
� Refinement
� Abstraction

Comp4151 Ansgar Fehnker

Algorithmic Verification

Verification techniques

� Mathematical proof

� Theorem proving

� Model checking

� Static analysis

deep
properties

simple
properties

manual

push
button

tedious

fastT
h
is
 c
o
u
rs
e

Comp4151 Ansgar Fehnker

Algorithmic Verification

� Testing and simulation have proven to work

� Why should we care about formal correctness?

Comp4151 Ansgar Fehnker

Algorithmic Verification

� Testing and simulation have proven to work

� Why should we care about formal correctness?

4

Comp4151 Ansgar Fehnker

"We must not put mistakes into programs because of sloppiness,
we have to do it systematically and with care." (Edsger Dijkstra)

Comp4151 Ansgar Fehnker

Correctness

Famous bugs

First computer bug (1945)

� "First actual case of bug being found” by Grace Hopper

� Operators noticed an error in the Mark II

� It was caused by a moth

trapped in a relay

� Bug on display in the Smithsonian

Comp4151 Ansgar Fehnker

Correctness

Famous bugs

Therac-25 Accident :

� X-ray machine with two modes

� X-rays, generated high energy electron-beam directed on
metal shield (between beam and patient)

� Low energy electron-beam without metal target

� A software error let operator inadvertently select high
energy beam without metal shield.

� Results: At least five patients die.

Comp4151 Ansgar Fehnker

Correctness

Famous bugs

Pentium bug (1994)

� First release of Intel Pentium chip

� Mistakes when dividing floating-point numbers that occur
within a specific range

� Estimated 3 million to 5 million defective chips

� PR nightmare for Intel

� Cost : $475 million

5

Comp4151 Ansgar Fehnker

Correctness

Famous bugs

Ariane 5 (1996)

� Ariane 5 used software used prior in Ariane 4

� 64-bit floating-point to 16-bit integer generated conversion
an overflow

� Error was caught, sub-system shut down

� Back-up systems failed for the same reason.

� Rocket veered off course.

� Control system decided to abort mission.

� Result: Rocket self-destructed

� Cost : $400 million payload

Comp4151 Ansgar Fehnker

Correctness

Famous bugs

USS Yorktown (1998)

� A program did not check for valid input.

� A crew member entered by mistake zero.

� Resulted in division by zero.

� Lead eventually to shut down of the ship's propulsion

system

� Result: The ship was dead in the water for several hours

Comp4151 Ansgar Fehnker

Correctness

Famous bugs

Mars Climate Orbiter (1999)

� One development team used pound/second in their code
while the other used Newton/second

� Vlaues passed from one module to another witout
conversion

� Result: Loss of the craft

� Cost: $ 125 million

Comp4151 Ansgar Fehnker

Correctness

Famous bugs

Code Red:

� Potential buffer over-flow in Microsoft Internet
Information Server

� Worm uses exploit. It sends specially crafted packets.

� Triggering a buffer overflow

� Giving worm administrative

privileges to the worm

� Cost: > $2 billion.

6

Comp4151 Ansgar Fehnker

� 11. EXCLUSION OF INCIDENTAL, CONSEQUENTIAL AND CERTAIN OTHER
DAMAGES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW,
IN NO EVENT SHALL MICROSOFT OR ITS SUPPLIERS BE LIABLE
FOR ANY SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL
DAMAGES WHATSOEVER (INCLUDING, BUT NOT LIMITED TO,
DAMAGES FOR LOSS OF PROFITS OR CONFIDENTIAL OR OTHER
INFORMATION, FOR BUSINESS INTERRUPTION, FOR PERSONAL INJURY,
FOR LOSS OF PRIVACY, FOR FAILURE TO MEET ANY DUTY INCLUDING OF
GOOD FAITH OR OF REASONABLE CARE, FOR NEGLIGENCE, AND FOR ANY
OTHER PECUNIARY OR OTHER LOSS WHATSOEVER) ARISING OUT OF
OR IN ANY WAY RELATED TO THE USE OF OR INABILITY TO USE
THE SOFTWARE PRODUCT, THE PROVISION OF OR FAILURE TO
PROVIDE SUPPORT SERVICES, OR OTHERWISE UNDER OR IN
CONNECTION WITH ANY PROVISION OF THIS EULA, EVEN IN THE EVENT
OF THE FAULT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY,
BREACH OF CONTRACT OR BREACH OF WARRANTY OF MICROSOFT OR
ANY SUPPLIER, AND EVEN IF MICROSOFT OR ANY SUPPLIER HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

� 11. EXCLUSION OF INCIDENTAL, CONSEQUENTIAL AND CERTAIN OTHER
DAMAGES. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW,
IN NO EVENT SHALL MICROSOFT OR ITS SUPPLIERS BE LIABLE
FOR ANY SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL
DAMAGES WHATSOEVER (INCLUDING, BUT NOT LIMITED TO,
DAMAGES FOR LOSS OF PROFITS OR CONFIDENTIAL OR OTHER
INFORMATION, FOR BUSINESS INTERRUPTION, FOR PERSONAL INJURY,
FOR LOSS OF PRIVACY, FOR FAILURE TO MEET ANY DUTY INCLUDING OF
GOOD FAITH OR OF REASONABLE CARE, FOR NEGLIGENCE, AND FOR ANY
OTHER PECUNIARY OR OTHER LOSS WHATSOEVER) ARISING OUT OF
OR IN ANY WAY RELATED TO THE USE OF OR INABILITY TO USE
THE SOFTWARE PRODUCT, THE PROVISION OF OR FAILURE TO
PROVIDE SUPPORT SERVICES, OR OTHERWISE UNDER OR IN
CONNECTION WITH ANY PROVISION OF THIS EULA, EVEN IN THE EVENT
OF THE FAULT, TORT (INCLUDING NEGLIGENCE), STRICT LIABILITY,
BREACH OF CONTRACT OR BREACH OF WARRANTY OF MICROSOFT OR
ANY SUPPLIER, AND EVEN IF MICROSOFT OR ANY SUPPLIER HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

A solution

Microsoft Powerpoint EULA Point 11

Comp4151 Ansgar Fehnker

� 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

� 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

A solution

The GPL

Comp4151 Ansgar Fehnker

The problem

The software crisis

� Computer become more powerful (Moore’s law)

� The quality of programs cannot keep up

� Up to 80% of all software development time is spent on locating
and correcting defects

� About 70% of all cost in hardware design go to verification and
validation

� Rework due to defects identified accounts for between 40% and
50% of total project cost

“When there were no computers programming was no problem. When we
had a few weak computers, it became a mild problem. Now that we have
gigantic computers, programming is a gigantic problem.” (Edsger Dijkstra)

Comp4151 Ansgar Fehnker

Algorithmic Verification

Verification techniques

� Mathematical proof

� Theorem proving

� Model checking

� Static analysis

deep
properties

simple
properties

manual

push
button

tedious

fastT
h
is
 c
o
u
rs
e

What is model checking?

7

Comp4151 Ansgar Fehnker

Model checking

The basic idea

� Given a model of the system

� Kripke structre, FSM, automaton, Petri net, …

� Given a formal specification

� LTL, CTL, mu-calculus, …

� another simpler model

� Calculate whether model satisfies specification

So it is like testing?

No, a model checker uses an algorithm to explore the

behavior of a system.

So it simulates the system behavior?

No, a model checker explores all possible behavior of a

system.

No proofs. (But you need math to build a model checker)

Fast (compared to other rigorous approaches)

Gives counter-examples (help with debugging, too)
Comp4151 Ansgar Fehnker

Model Checking

Microwave Oven Example

The model

� state-transition graph

� describes system evolving

over time.

~ Start
~ Close
~ Heat
~ Error

Start
~ Close
~ Heat
Error

~ Start
Close
~ Heat
~ Error

~ Start
Close
Heat

~ Error

Start
Close
Heat

~ Error

Start
Close
~ Heat
~ Error

Start
Close
~ Heat
Error

Comp4151 Ansgar Fehnker

Model Checking

Microwave Oven Example

The property

� The oven doesn’t heat up

until the door is closed.

�

�

~ Start
~ Close
~ Heat
~ Error

Start
~ Close
~ Heat
Error

~ Start
Close
~ Heat
~ Error

~ Start
Close
Heat

~ Error

Start
Close
Heat

~ Error

Start
Close
~ Heat
~ Error

Start
Close
~ Heat
Error

� Not heat_up until door_closed

� In temporal logic

(~ heat_up) U door_closed

Comp4151 Ansgar Fehnker

Property Specifications

Temporal Logic

� Express properties of event orderings in time

� Basic operators

� Let “p” atomic proposition, e.g. “Device Enabled”.

Fp - p holds sometime in the future.

Gp - p holds globally in the future.

Xp - p holds next time.

pUq - p holds until q holds.

8

Comp4151 Ansgar Fehnker

Property Specifications

Temporal Logic

� Express properties of event orderings in time

� Linear Time
� Every moment has a unique successor

� Infinite sequences (words)

� Linear Time Temporal Logic (LTL)

� Branching Time
� Every moment has several successors

� Infinite tree

� Computation Tree Logic (CTL)

Comp4151 Ansgar Fehnker

Property Specifications

Safety and Liveness

� Safety properties

� Invariants, deadlocks, reachability, etc.

� Can be checked on finite traces

� “something bad never happens”

� Liveness Properties

� Fairness, response, etc.

� Infinite traces

� “something good will eventually happen”

Comp4151 Ansgar Fehnker

Temporal Logic Model Checking

History

� Model checking introduced as automatic verification technique
for finite state concurrent systems.

� Developed independently by Clarke, Emerson, and Sistla and

by Queille and Sifakis in early 1980’s.

� Specifications are written in propositional temporal logic.

� Verification procedure is an exhaustive search of the state
space of the design.

Comp4151 Ansgar Fehnker

Model Checking

EMC

The first model checker by Clarke and Emerson

PreprocessorPreprocessor Model Checker
(EMC)

Model Checker
(EMC)

State Transition Graph
104 to 105 states

State Transition Graph
104 to 105 states

SpecificationSpecification

True or CounterexamplesTrue or Counterexamples

9

Comp4151 Ansgar Fehnker

State Explosion Problem

� The size of the model grows exponentially

� Example

� A 50 x 50 wireless network.

� Each node has 3 states: wait, send, sleep

� Composed system has 3250 ≈ 10125 states

� Compare to 1078 atoms in universe

� 25 years of research to combat state explosion
problem

Model Checking

Comp4151 Ansgar Fehnker

Model Checking

SMV (Ken McMillan, CMU, 1987)

� First breakthrough by symbolic model checking

� Using Binary Decision Diagrams to represent state
transition systems more efficiently.

� Could handle large state spaces

� Heuristics to handle search spaces well

� Specification: CTL (and later LTL)

� by far the most useful technique in the hardware domain

Comp4151 Ansgar Fehnker

Model Checking

SPIN (Holzmann, Bell Labs, ’90s)

� Explicit-state model checker

� Uses PROMELA modeling language

� Heuristics to control state-space explosion

� Partial order reduction

� Hashing and approximate search

� Specification: LTL / Buechi automata

� Succesful in protocol verification

Comp4151 Ansgar Fehnker

Model Checking

� Advent of SAT tools (2000)

� Check if a boolean formaula is satisfiable

� zChaff (Princeton) first tool

� Handles formulas with 100000 variable,

and millions of clauses!

10

Comp4151 Ansgar Fehnker

Model Checking

SAT-based techniques

Bounded model checking

� Is there a path of length k that reaches an unsafe state?

� Transform problem to a satisfiablity problem.

Counterexample guided abstraction refinement

� Use small abstraction to compute potential counterexamples

� Use efficient SAT-solver to check potential counterexamples

SAT-solvers are used by most modern model checkers

Comp4151 Ansgar Fehnker

Model Checking

SAT-based tools

SLAM (Ball and Rajamani, 2000)

� Developed by Microsoft Research

� Verifies device drivers against formal specifications

C-BMC (Kroening, 2002)

� Bounded model checker for ANSI-C

Comp4151 Ansgar Fehnker

Model Checking

Static analysis

� Static analysis to find patterns of bad programming
practice in systems code.

� Very successful in terms of errors found

� 100s of bugs (incl security) found in Linux/BSD

� Errors in various protocols, drivers.

� Explicit-state analysis on CFG.

Comp4151 Ansgar Fehnker

Model checking

Hardware vs software model checking

Hardware model checking

� BDD-based model checking was the enabling technology

� Hardware is typically synchronous and regular

� Known semantics

� The Intel Pentium bug, got model checking on the map

Software

� Focus until the late 90’s on design, rather than programs

� Fuzzy program semantics

� Contrary to tradition: Code first, test later.

� Catching bugs early is more cost-effective

� SAT and abstraction based techniques state-of-the-art

11

Comp4151 Ansgar Fehnker

Model Checker Performance

State-of-the-art

� Model checkers today can routinely handle systems with

between 100 and 1000 state variables.

� Systems with 10120 reachable states have been checked.

� By using appropriate abstraction techniques, systems with an
essentially infinite number of states can be checked.

� There are many successful examples of the use of model
checking in hardware and protocol verification.

Comp4151 Ansgar Fehnker

Hardware verification
� Verifying microprocessor designs, cache coherence protocols
� Tools: SMV, nuSMV, VIS, Mocha, FormalCheck

� Protocol verification
� Network/Communications protocol implementations
� Tools: Spin

� Software verification
� Apply directly to source code (e.g., device drivers)
� Tools: SLAM, Blast, Magic

� Embedded and real time systems
� Tools: Uppaal, HyTech, Kronos, Charon, Phaver

� Static Analysis
� Tools: Coverity, Polyspace, Flexelint, UNO, Klocwork, Goanna

Algorithmic Verification

Comp4151 Ansgar Fehnker

The course

Content
� Introduction

� Modelling Systems

� Temporal Logic

� CTL Model Checking

� NuSMV

� LTL Model Checking

� Spin

� Partial order and symmetry reduction

� SAT-based model checking

� Static Analysis

� Model checking Timed Automata

� Beyond time

Comp4151 Ansgar Fehnker

The course

Homework 1

� 3rd to 4th week of March

Verification Project

� 2nd week of April to 1st week of May

Homework 2

� 3rd to 4th week of May

Exam in June

Assessment Criteria
� Homework: 25%

� Verification Project: 25%

� Final Exam: 50% (2h, written)

12

Comp4151 Ansgar Fehnker

The course

When and Where
� Tues 14:00 - 16:00 (K-B11B-8)

� Thu 14:00 - 15:00 (APPSC G02)

Office hour:
� Thu 15:00-16:00

Dr. Ralf Huuck (LiC)
� Email: rhuuck

� Phone: 8306 0493

� Office: Room E523, L5 Building

Dr. Ansgar Fehnker
� Email: ansgar

� Phone: 8306 0490

� Office: Room E520, L5 Building

Comp4151 Ansgar Fehnker

Questions?

http://www.cse.unsw.edu.au/~cs4151/

