

Overview

Modelling

- Finite automata
- Büchi automata
- Kripke structures

Specification

- Linear Time Logic
- Computation Tree Logic
- CTL*

Overview

Explicit state CTL

- Bottom-up recursive labelling algorithm
- Linear in the size of Kripke structure and formula

However

- Suffers from state explosion problem

Fixpoint characterization of CTL

- Leads to set based algorithm

Overview

Semantic of CTL with fixpoints

Given Kripke structure $M=\left(S, s_{0}, ~ \rightarrow, \mu\right)$, with n states, and ϕ in ENF over atomic propositions AP.

- $[$ |true $\mid]=\mathrm{S}$
- [|false|] = \varnothing
- $[|p|]=\{s \mid p \in \mu(s)\}$
- [| $\neg \phi \mid]=S \backslash[|\phi|]$
- $[|\phi \wedge \psi|]=[|\phi|] \cap[|\psi|]$
- [|EX $\phi \mid]=\left\{s \mid \exists\left(s, s^{\prime}\right) \in \rightarrow\right.$
- [| $\mathrm{E} \phi \cup \psi \mid]=\mathrm{f}_{\mathrm{EU}}{ }^{n}(\varnothing)$
- $[|\mathrm{EG} \phi|]=\mathrm{f}_{\mathrm{EG}}{ }^{\mathrm{n}}$ (S)
- Translates to an algorithm based on sets
- Sets of states as unordered list lists are inefficient
- We need
- Compact set representation - Efficient operations on sets
\qquad

Boolean Function

Example:

$$
\begin{aligned}
& f\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\left(\mathrm{x}_{1} \vee \mathrm{x}_{2}\right) \wedge \mathrm{x}_{3} \\
& \begin{array}{|c|c|c|c|}
\hline \mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{x}_{3} & \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) \\
\hline 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 \\
\hline 0 & 1 & 0 & 0 \\
\hline 0 & 1 & 1 & 1 \\
\hline 1 & 0 & 0 & 0 \\
\begin{array}{c}
\text { compact, but } \\
\text { satisfiablity and } \\
\text { comparison } \\
\text { hard }
\end{array} \\
\hline 1 & 0 & 1 & 1 \\
\hline 1 & 0 & 0 & 0 \\
\hline 1 & 0 & 1 & 1 \\
\hline
\end{array} \begin{array}{c}
\text { exponential size: } \\
2^{n} \text { lines for } n \\
\text { variables }
\end{array} \\
& \hline
\end{aligned}
$$

Boolean Functions

Definition

A boolean variable is variable over values $\{0,1\}$.

A boolean function over n arguments is a function
f: $\{0,1\}^{n} \rightarrow\{0,1\}$

Two common representations of boolean functions - propositional formula

- truth table

Boolean Functions

Binary Decision Diagrams
Represents boolean functions as directed acyclic graph with a single initial node

More compact representation than decision trees

Omit duplicated nodes and unnecessary tests.

OBDDs

Variable ordering

- Size of an (reduced) OBDD depends on the order
- Checking a variable order for optimality is NP-hard
- For some formulas size is exponential for any order
- In practice these cases rarely occur
- There are good heuristics to find good orders

OBDDs

Intermediate Summary

OBDDs provide a compact representation for boolean functions (most of the times)

Satisfiability and comparison are easy to check

However:

- What about other operations on OBDDs?
- What is the relation with model checking?

Operations on OBDDs

Reduce

Bottom-up labelling based on the reduction rules
Label nodes with integer numbers as follows

- two terminal nodes with the same value get the same label
- if lo(i)=hi(i) replace set label(i) to label(lo(i))
- if $\operatorname{var}(\mathrm{i})=\operatorname{var}(\mathrm{j})$ and $\operatorname{lo}(\mathrm{i})=\operatorname{lo}(\mathrm{j})$ and hi(i)=hi(i) for some j set label(i) to label(j)
- otherwise label(i) with next unused integer

After labelling redirect edges bottom-up

Operations on OBDDs

Restrict

Restrict variable x of function f to constant value b, i.e. replace all occurrences of x by b.

Example
$f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1} \vee x_{2}\right) \wedge x_{3}$
$f\left[0 / x_{2}\right]\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1} \vee 0\right) \wedge x_{3}=x_{1} \wedge x_{3}$ $f\left[1 / x_{2}\right]\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1} \vee 1\right) \wedge x_{3}=x_{3}$

Operations on OBDDs

Restrict

f
f[0/x $\left.{ }_{2}\right]$

$\mathrm{f}\left[1 / \mathrm{x}_{2}\right]$

reduce($\mathrm{f}\left[1 / \mathrm{x}_{2}\right]$)

Operations on OBDDs

${ }^{\circ}$ can be any boolean operation: and, or, xor,

 7Given OBDDs B_{f} and B_{g} for boolean formulas f and g. Apply $\left({ }^{\circ}, B_{f}, B_{g}\right)$ computes the OBDD of $f^{\circ} g$
Basic Idea

- Let x be smallest variable of B_{f} and B_{g} (i.e root in B_{f} or B_{g})
- Split into two smaller sub-problem for $\mathrm{x}=0$ and $\mathrm{x}=1$.
- Repeat until leaves are reached. Apply ${ }^{\circ}$ to the leaves.
Recursive application of Shannon Expansion

$$
f=\left(\neg x_{i} \wedge f\left[0 / x_{i}\right]\right) \vee\left(x_{i} \wedge f\left[1 / x_{i}\right]\right)
$$

Operations on OBDDs

Apply

Given OBDDs B_{f} and B_{g} for boolean formulas f and g. Apply $\left({ }^{\circ}, B_{f}, B_{g}\right)$ computes the OBDD of $f^{\circ} g$

Basic Idea

- Let x be smallest variable of B_{f} and B_{g} (i.e root in B_{f} or B_{g})
- Split into two smaller sub-problem for $\mathrm{x}=0$ and $\mathrm{x}=1$.
- Repeat until leaves are reached. Apply ${ }^{\circ}$ to the leaves.

Recursive application of Shannon Expansion
$f^{\circ} g=\left(\neg x_{i} \wedge\left(f\left[0 / x_{i}\right]^{\circ} g\left[0 / x_{i}\right]\right)\right) \vee\left(x_{i} \wedge\left(f\left[1 / x_{i}\right]^{\circ} g\left[1 / x_{i}\right]\right)\right)$

Operations on OBDDs

Apply

Given OBDDs B_{f} and B_{g} for boolean formulas f and g. Let i_{f} and i_{g} be the root nodes of B_{f} and B_{g}.

Rule 1:
if i_{f} and i_{g} are non-terminal nodes and $\operatorname{var}\left(\mathrm{i}_{\mathrm{f}}\right)=\operatorname{var}\left(\mathrm{i}_{q}\right)$
\Rightarrow label current node with $\operatorname{var}\left(\mathrm{i}_{\mathrm{f}}\right)$ create a low edge to apply $\left({ }^{\circ}, \operatorname{lo}\left(\mathrm{i}_{\mathrm{f}}\right), \mathrm{l}\left(\mathrm{i}_{\mathrm{q}}\right)\right)$ create a hi edge to apply $\left({ }^{\circ}, \mathrm{hi}\left(\mathrm{i}_{\mathrm{f}}\right), \mathrm{hi}\left(\mathrm{i}_{\mathrm{g}}\right)\right)$ \qquad

Operations on OBDDs

Apply

Given OBDDs B_{f} and B_{g} for boolean formulas f and g. Let i_{f} and i_{g} be the root nodes of B_{f} and B_{g}.

Rule 2:
if i_{f} is a non-terminal and $\operatorname{var}\left(\mathrm{i}_{\mathrm{f}}\right)<\operatorname{var}\left(\mathrm{i}_{\mathrm{q}}\right)$ or i_{g} a terminal
\Rightarrow label current node with $\operatorname{var}\left(\mathrm{i}_{f}\right)$ create a low edge to apply $\left({ }^{\circ}, \mathrm{lo}\left(\mathrm{i}_{\mathrm{f}}\right), \mathrm{i}_{\mathrm{g}}\right)$ create a hi edge to apply $\left({ }^{\circ},{ }^{\circ} \mathrm{hi}\left(\mathrm{i}_{\mathrm{f}}\right), \mathrm{i}_{\mathrm{g}}\right)$

$\operatorname{var}\left(\left(_{f}\right)<\operatorname{var}\left(i_{q}\right)\right.$ implies $x=\operatorname{var}\left(i_{f}\right)$ is not in g, thus $g[0 / x]=9$

Operations on OBDDs

Apply

Given OBDDs B_{f} and B_{g} for boolean formulas f and g. Let i_{f} and i_{g} be the root nodes of B_{f} and B_{g}.

Rule 4:
if i_{f} and i_{g} are terminal nodes labelled b_{f} and b_{g}
\Rightarrow label current node with $b_{f}{ }^{\circ} b_{g}$

Operations on OBDDs

Negate
Given boolean functions f and reduced OBDD $^{\mathrm{f}}$, compute \neg f, by swapping the leaves.

Model Checking and OBDDs

Another Intermediate Summary

- OBDDs provide a compact representation for boolean functions (most of the times)
- Satisfiability and comparison are easy to check
- Efficient algorithms for boolean operations
- However:
- What is the relation with model checking?

Symbolic CTL Model Checking

Observations

- Boolean function $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$ can be used to represent subsets of $\{0,1\}^{n}$
- Each finite set (of states) can be mapped to $\{0,1\}^{\text {n }}$
- Boolean function can be presented as OBDD.
- Given Kripke structure $\mathrm{M}=\left(\mathrm{S}, \mathrm{S}_{0}, \mathrm{R}, \mathrm{L}\right)$
- Set of states S
- Set of intitial states S_{0}
- Transition relation R is set of pairs of states
- Labelling function $\mathrm{L}, \mathrm{L}^{-1}$ maps labels to sets of states
- States, intial states, transition relation and labeling can be represented as OBDDs

Symbolic CTL Model Checking

State space

- Each state can be represented as vector of boolean values
- The set of initial states can be represented by a boolean function

Example

- $\mathrm{S}_{0}=\left\{\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \mid \neg \mathrm{x}_{1} \wedge \neg \mathrm{x}_{2}\right\}$

Symbolic CTL Model Checking

Transition relation

- Each transition can be represented pairs of states
- The transition relation can be represented by a boolean function over $x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}$

Example

- $\left(\mathrm{s}_{1}, \mathrm{~s}_{2}\right)$ as $((0,0),(0,1))$

- $((0,0),(0,1))$ satsifies
$\left(\neg x_{1} \wedge \neg x_{2} \wedge \neg x_{1}^{\prime} \wedge x_{2}^{\prime}\right)$
- R is the disjunction of boolean functions for all transitions

Symbolic CTL Model Checking

Symbolic Representation

Given $M=(S, S 0, R, L)$ over set of atomic proposition AP
Explicit representation
$A P=\{p, r\}$
$\mathrm{S}=\left\{\mathrm{s}_{1}, \mathrm{~s}_{3}, \mathrm{~s}_{2}, \mathrm{~s}_{4}\right\}$ $\mathrm{S}_{0}=\left\{\mathrm{s}_{1}\right\}$
$\mathrm{R}=\left\{\left(\mathrm{s}_{1}, \mathrm{~s}_{2}\right),\left(\mathrm{s}_{2}, \mathrm{~s}_{2}\right),\left(\mathrm{s}_{2}, \mathrm{~s}_{3}\right),\left(\mathrm{s}_{3}, \mathrm{~s}_{4}\right)\right\}$ $\mathrm{L}\left(\mathrm{s}_{1}\right)=\{\mathrm{p}\} \quad \mathrm{L}\left(\mathrm{s}_{2}\right)=\{\mathrm{p}\}$ $\mathrm{L}\left(\mathrm{s}_{3}\right)=\{\mathrm{p}, \mathrm{r}\} \quad \mathrm{L}\left(\mathrm{s}_{4}\right)=\{\mathrm{p}\}$

Symbolic CTL Model Checking

Symbolic CTL Model Checking

OBDD operations

Booelan operators

- [|true|] = S
- OBDD with leaf 1
- OBDD with leaf 0
- [|p|] = \{s|p $\in \mu(s)\}$
- OBDD for $\mathrm{L}^{-1}(\mathrm{p})$
- [| $\neg \phi \mid]=S \backslash[|\phi|]$
- Negate(B_{o})
- $[|\phi \wedge \psi|]=[|\phi|] \cap[|\psi|] \quad$ - Apply $\left(\wedge, B_{\phi}, B_{\psi}\right)$

Temporal Operators

- $[|\operatorname{EX} \phi|]=\left\{s \mid \exists\left(s, s^{\prime}\right) \in \rightarrow\right.$ such that $\left.s^{\prime} \in[|\phi|]\right\}$
- $\exists x_{1}^{\prime}, \ldots, x_{n}^{\prime}\left(f_{\phi}\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right) \wedge f_{\mathrm{R}}\left(x_{1}, \ldots, x_{n}, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right)\right)$
- Implem $\in \underset{\substack{\text { OBDD } \\ \text { for } \phi}}{\text { combi }} \underbrace{\text { Exists }}_{\substack{\text { OBDD for transition } \\ \text { relation } R}}$

Symbolic CTL Model Checking

OBDD operations

Temporal Operators

- [| EG ϕ |] is the greatest fixpoint of
$f_{E G}(P)=[|\phi|] \cap[|E X P|]$
- Implemented by combination of Apply and Exists

Symbolic CTL Model Checking

Summary

- Fixpoint characterization of CTL translates to an algorithm based on sets
- Set in general and Kripke structures in particular can be modelled with boolean function
- OBDDs provide a canonical representation of boolean functions that provides
- Compact representation of sets
- Efficient operations on sets
- Next lecture: SMV

