Algorithmic Verification

Comp4151
Lecture 5-A
Ansgar Fehnker

Overview

Explicit state CTL
= Bottom-up recursive labelling algorithm
= Linear in the size of Kripke structure and formula

However
= Suffers from state explosion problem

Fixpoint characterization of CTL
= Leads to set based algorithm

Overview

Modelling
= Finite automata
= Biichi automata
= Kripke structures

i

= (=) — (]

Specification
= Linear Time Logic
= Computation Tree Logic
= CTl L*

CTL*

Overview

Semantic of CTL with fixpoints

Given Kripke structure M=(S, sy, -, 1), with n states,

and @ in ENF over atomic propositions AP.
[

= [|true|]] =S .
= lransi S n il
fal _ Translates to an algorithm
* [lfalse|] =1 based on sets
“[pll={slpOwns)} = Sets of states as unordered list
=[l-@ll=S\[lol] lists are inefficient

o0y N=lglnyp| wemeed
“HEXo={s|068)0 =3 Eiicinoperations on sets
“[IEQUY 1= o2 ()

" [1EG o] = fes(S)

Binary Decision Diagrams

A longer diversion

With examples and illustrations by Andreas Jacobs and
Massimo Benerecetti

Boolean Functions

Definition
A boolean variable is variable over values {0,1}.

A boolean function over n arguments is a function
f: {Oll}n - {011}

Two common representations of boolean functions
= propositional formula
= truth table

Boolean Function

Example:

compact, but

satisfiablity and
comparison

hard

(X1, X, X3)= (X, 0%;) 0%

X | X | X3 | f(Xy X X3)

00| 0 0

0/0]1 0 exponential size:
0 110 0 2" lines for n
0 1 1 1 variables
1(0(0 0

101 1

1100 0

1 /01 1

Boolean Function
Binary Decision Tree

= Represents boolean function as a decision tree
= Non-terminal node i labeled with
= variable var(i)
= successors lo(i) and hi(i)
= Terminal nodes are labeled 0 or 1
= Fast lookup of f(xy, ..., X;) given X, ..., X,

Boolean Functions

Binary Decision Tree

f(Xy, Xp, X3)= (X, 0 %) O3

= =o|lo|olo

lo|lr|o|m|lo|~lo
=l o|lm|o|mlolo

olo|o|o|r|r|olo

g em
S
,

non-terminal
nodes

0‘

terminal
nodes

Boolean Functions

Binary Decision Tree

f(0, 1, 1)= (001) 01

X % | % | fx % %)
oJo]o 0
oot 0
0[1]0 0
011 1
1]o]o 0
1]o]1 1
iJo]o 0
101 1

Boolean Functions

Binary Decision Tree

f(1,0, 1)= (100) 01

X

X | X5 | O % %)
0

RREEEEEE
o|o|o|o|~|~|olo
o|m|o|~|lol=lo
| o|=|o|~lolo

still exponential size:
2m1-1 nodes for n
variables

Boolean Functions

Binary Decision Diagrams

Represents boolean functions as directed acyclic

graph with a single initial node

More compact representation than decision trees

Omit duplicated nodes and unnecessary tests.

Binary Decision Diagrams
Reduction

Rule 1: Share identical terminal nodes.

Binary Decision Diagrams
Reduction

Rule 2: Remove redundant tests
@ @
e 1 i 1
\\ 7/ 7 -

|
il i

Binary Decision Diagrams
Reduction

Rule 3: Share identical non-terminal nodes.

Binary Decision Diagrams
Reduction

Rules applied iteratively

Binary Decision Diagrams
Definitions

A BDD is reduced if none of reduction rules can be
applied

Given a variable order x; < ... < x, a BDD is ordered
if for each node i holds

JO{ lo(i), hi(i) } implies x; < x;

OBDDs

Theorem

Two reduced ordered BDDs with respect to the same
order X, < ... < X, represent the same boolean
function iff they have the same structure.

Furthermore
= A function is a tautology if its ROBDD v is equalto 1.
= A function is a satisfiable if its ROBDD v is not equalto 0

‘ ROBDDs provide a canonical for boolean functions

Binary Decision Diagrams

Examples

OBDDs

Variable ordering

= Size of an (reduced) OBDD depends on the order

OBDDs

Variable ordering

Example: (a, Ob,) O(a, Ob,) O(a, Ob;)

@
FgC
:'
G
&
!
i

a,<b <a,<b,<a,<b, a.l<a2<:;1;7<75:<b2<b3

OBDDs

Variable ordering

= Size of an (reduced) OBDD depends on the order

= Checking a variable order for optimality is NP-hard
= For some formulas size is exponential for any order
= In practice these cases rarely occur

= There are good heuristics to find good orders

OBDDs

Intermediate Summary

OBDDs provide a compact representation for boolean
functions (most of the times)

Satisfiability and comparison are easy to check
However:

= What about other operations on OBDDs?
= What is the relation with model checking?

Operations on OBDDs

Reduce

Bottom-up labelling based on the reduction rules

Label nodes with integer numbers as follows
= two terminal nodes with the same value get the same label
= if lo(i)=hi(i) replace set label(i) to label(lo(i))
= if var(i)=var(j) and lo(i)=lo(j) and hi(i)=hi(i) for some j
set label(i) to label(j)
= otherwise label(i) with next unused integer

After labelling redirect edges bottom-up

Operations on OBDDs

Operations on OBDDs
Restrict

Restrict variable x of function f to constant value b,
i.e. replace all occurrences of x by b.

For any node i pointing to a node j with var(j)=x
= repalce pointer of i by lo(j) if b=0
= replace pointer of j by hi(j) if b=1

Operations on OBDDs
Restrict

Restrict variable x of function f to constant value b,
i.e. replace all occurrences of x by b.

Example
f(Xy, Xpr X3) = (x Uxp) Ox3
f0/%;] (X1, Xy X3) = (x;00) Ox3 =X Ox3
f1/%,] (Xy, Xy X3) = (x;01) Ox3 = X3

Operations on OBDDs

Restrict

[o] [o] o] [o]

f f10/%,] f11/%,] reduce(f[1/x,])

Operations on OBDDs

° can be any
boolean operation:
and, or, xor, ...

Apply

Given OBDDs B; and By for boolean formulas f and g.
Apply(°, By ,By) computes the OBDD of f°g

Basic Idea

= Let x be smallest variable of B; and B, (i.e root in B or By)
= Split into two smaller sub-problem for x=0 and x=1.
= Repeat until leaves are reached. Apply ° to the leaves.

Recursive application of Shannon Expansion
f= (=% 0f0/x]) O (x Of1/x])

Operations on OBDDs
Apply

Given OBDDs B; and By for boolean formulas f and g.
Let i;and iy be the root nodes of B; and B, .

Rule 1:
if irand iy are non-terminal nodes and var(i)= var(i;)
= label current node with var(ic)
create a low edge to apply(®,lo(ie),10(ig))

create a hi edge to apply(®hi(ig),hi(ig))

Operations on OBDDs

Apply

Given OBDDs B; and By for boolean formulas f and g.
Apply(°, By ,By) computes the OBDD of f°g

Basic Idea

= Let x be smallest variable of B; and B, (i.e root in B or By)
= Split into two smaller sub-problem for x=0 and x=1.
= Repeat until leaves are reached. Apply ° to the leaves.

Recursive application of Shannon Expansion

feg = (=% 0(fT0/x1°g[0/x])) O (x O(fT1/x]°g[1/x1]))

Operations on OBDDs
Apply

Given OBDDs B; and By for boolean formulas f and g.
Let irand iy be the root nodes of B; and B, .

Rule 2:

if i¢ is a non-terminal and var(i))< var(ig) or i;a terminal
= label current node with var(ic)

create a low edge to apply(®,lo(ic) ig)
create a hi edge to apply(®hi(i),ig)

‘ var(i)<var(iy) implies x=var(iy) is not in g, thus g[0/x]=g ‘

Operations on OBDDs Operations on OBDDs

Apply Apply
Given OBDDs B; and By for boolean formulas f and g. Given OBDDs B; and By for boolean formulas f and g.
Let i;and iy be the root nodes of B; and B, . Let irand iy be the root nodes of B; and B, .
Rule 3: Rule 4:
if i is a non-terminal and var(i)) > var(ig) or i;a terminal if irand iy are terminal nodes labelled b; and b,

= Similar to Rule 2 = label current node with by ° by i ‘

Operations on OBDDs Operations on OBDDs

Apply 29 =(=x; 0 (F0/x,1°9[0/,])) Apply 29 =(=x; 0 (F0/x,1°9[0/,]))
0 (% O(f1/x1°al1/x,]) 0 (% O(fl1/x1°al1/x,])
G F G
\ <)

fon [ameam] G ®

Oy]
~ RiisED)

by
(F10/x,1[1/%] °9[0/x4]))

) applya;b,) [L2pp(220

/ [
4 apply(°,a,b,) < 2
/ =20 O

b,
@ (F10/%,1°9[0/,])) m
b.

’

/
/ _apply(°.a4.b2)

~
~

(f10/%,110/%,] *g[0/x,1))

Operations on OBDDs
Apply

(m ()
pZ B

/

7 |Lapply(°.a.b,)
/ - \ @)

I /,@66

J L
apply(®,a,,b,) apply(®,a,,by)

Operations on OBDDs

Apply

-

X
== P

g
<
2

v
apply(®.a,,b,) apply(®,a,,by)

Operations on OBDDs

Apply
(o ()

-
apply(a, b,) U
apply(®,as,bs)

Operations on OBDDs

Apply

apply(®,a,,b,)

apply(°,as,b,)

10

Operations on OBDDs
Apply

G

(<om |appy(Dayby) “(x)

b, 4 ®\I
O
@ o]

Reduce to obtain ROBDD

Operations on OBDDs
Negate

Given boolean functions f and reduced OBDD By,
compute -f, by swapping the leaves.

Operations on OBDDs
Exist

Given boolean functions f variable x and reduced
OBDD B, compute [x.f.

We have
x.f = f[0/x] Of[1/x]

= We can use an combination of Restrict and Apply

‘ More efficiency by exploiting common structure in f[0/x] and f[1/x] ‘

Operations on OBDDs

Some complexities

Operation Complexity
Reduce O(F)

Negate constant
Apply O(IFI*IGI)
Exists O(|F[*|G[*22)

11

Model Checking and OBDDs

Another Intermediate Summary

= OBDDs provide a compact representation for
boolean functions (most of the times)

= Satisfiability and comparison are easy to check
= Efficient algorithms for boolean operations

= However:
= What is the relation with model checking?

Symbolic CTL Model Checking

State space

= Each state can be represented as vector of boolean
values
= The set of initial states can be represented by a
boolean function
p ' p p.r r

Example 0,00 (O, (1,o) (1,1)
=S ={(X1,Xz)|"xl 0= X}

Symbolic CTL Model Checking

Observations
= Boolean function f: {0,1}" - {0,1} can be used to represent

subsets of {0,1}"
Each finite set (of states) can be mapped to {0,1}"
Boolean function can be presented as OBDD.
Given Kripke structure M = (S, Sy, R, L)

= Set of states S

= Set of intitial states S,

= Transition relation R is set of pairs of states

= Labelling function L, L't maps labels to sets of states
States, intial states, transition relation and labeling can be
represented as OBDDs

Symbolic CTL Model Checking

Transition relation

= Each transition can be represented pairs of states

= The transition relation can be represented by a
boolean function over Xy,..., X,, X; ey Xy

Example .F_,‘_,._.. p p’r r

= (sus7) as ((0,0),(0,1)) 0,00 (0,1) (Lo) (1,1
= ((0,0), (0,1)) satsifies

(=%, 0= %, O =x4 0 Xy)
= Ris the disjunction of boolean functions for all transitions

12

Symbolic CTL Model Checking

Labelling

= L1 maps labels to sets of states

= This set can be represented as boolean function

Example

= LY(p)={(0,0),(0,1),(1,0)}

= L(p) is represented by

p p p.r
(S)—>(s—(s

0,00 (0,1) (1,0)

(=3, R %) (=X, DG) Xy [%)= = X[~ %4 ;)

i

(1,1)

Symbolic CTL Model Checking

Symbolic Representation

Given M = (S, SO, R, L) over set of
atomic proposition AP

Explicit representation

AP={p,r}

S = {s1, 83, 52, 84}

So={s1}

R = {(s1, 52), (52, 52), (52, 83), (83, 84)}
L(s) = {p} L(s2) = {p}

L(s3) = {p.r} L(ss) = {p}

p 4 \p p.r r
(S —>(s—(s9—(s9)

0,00 (©1H (10 (1D
Symbolic representation

$12(0,0) $2(0,1)
$32(1,0) s:2(1,1)

R=1{((0,0), (0,1)), ((0,1), (0,1)),

((0,1), (1,00), ((1,0), (1,1)) }
L(p) = {(0.0), (0,1). (10)}
L) = {(1,0), (1,1)}

Symbolic CTL Model Checking

OBDD operations

Booelan operators

= [|true|]] =S

= [|false|] = O
“[Ipll={slpOus)?}
“[=ell=S\[lell

lebull=Mellnllwl]

= OBDD with leaf 1
= OBDD with leaf 0
= OBDD for LY(p)
= Negate(B,)

= Apply(C By, By,)

Symbolic CTL Model Checking

OBDD operations

Temporal Operators

= [|EX@|]={s|O(,s) 0 - suchthats'O[| @|]}

- D(Ill'"IX’n(fq)(Xlll"'IX’n) OfaXgyee XX 700 X'n)

= Implemg OfBDD combi 550 for transition
or @

relation R

13

Symbolic CTL Model Checking
OBDD operations

Temporal Operators

= [|EQUu |] is least fixpont of
feu (P)=[IwI1 O ([l9l] n [IEXPI])

= Implemented by combination of Apply and Exists

Symbolic CTL Model Checking
OBDD operations

Temporal Operators

= [| EG @[] is the greatest fixpoint of
fec(P) = [lol] n [IEXPI]

= Implemented by combination of Apply and Exists

Symbolic CTL Model Checking

Summary

= Fixpoint characterization of CTL translates to an

algorithm based on sets

= Set in general and Kripke structures in particular

can be modelled with boolean function
= OBDDs provide a canonical representation of
boolean functions that provides
= Compact representation of sets
= Efficient operations on sets
= Next lecture: SMV

14

