
1

Comp4151 Ansgar Fehnker

Algorithmic Verification

Comp4151

Lecture 5-A

Ansgar Fehnker

Comp4151 Ansgar Fehnker

Overview

Modelling
� Finite automata

� Büchi automata

� Kripke structures

Specification
� Linear Time Logic

� Computation Tree Logic

� CTL*

LTL CTL

CTL*

s0

s2

s1

s0 s1

Comp4151 Ansgar Fehnker

Overview

Explicit state CTL
� Bottom-up recursive labelling algorithm

� Linear in the size of Kripke structure and formula

However
� Suffers from state explosion problem

Fixpoint characterization of CTL
� Leads to set based algorithm

Comp4151 Ansgar Fehnker

Overview

Semantic of CTL with fixpoints

Given Kripke structure M=(S, s0, →, µ), with n states,
and φ in ENF over atomic propositions AP.

� [|true|] = S

� [|false|] = ∅
� [| p |] = { s | p ∈ µ(s) }
� [|¬ φ |] = S \ [| φ |]

� [| φ ∧ ψ |] = [| φ |] ∩ [| ψ |]

� [| EX φ |] = { s | ∃ (s,s’) ∈ → such that s’ ∈ [| φ |] }

� [| E φ U ψ |]= fEU
n (∅)

� [| EG φ |] = fEG
n(S)

� Translates to an algorithm
based on sets

� Sets of states as unordered list
lists are inefficient

� We need
� Compact set representation
� Efficient operations on sets

2

Comp4151 Ansgar Fehnker

Binary Decision Diagrams

A longer diversion

With examples and illustrations by Andreas Jacobs and

Massimo Benerecetti

Comp4151 Ansgar Fehnker

Boolean Functions

Definition

A boolean variable is variable over values {0,1}.

A boolean function over n arguments is a function

f: {0,1}n → {0,1}

Two common representations of boolean functions
� propositional formula

� truth table

Comp4151 Ansgar Fehnker

Boolean Function

Example:
f(x1, x2, x3)= (x1 ∨ x2) ∧ x3

f(x1, x2, x3)x3x2x1

1101

0001

1101

0001

1110

0010

0100

0000

exponential size:
2n lines for n

variables

compact, but
satisfiablity and

comparison
hard

Comp4151 Ansgar Fehnker

Boolean Function

Binary Decision Tree

� Represents boolean function as a decision tree

� Non-terminal node i labeled with
� variable var(i)

� successors lo(i) and hi(i)

� Terminal nodes are labeled 0 or 1

� Fast lookup of f(x1, …, xn) given x1, …, xn

3

Comp4151 Ansgar Fehnker

Boolean Functions

Binary Decision Tree

f(x1, x2, x3)= (x1 ∨ x2) ∧ x3
f(x1, x2, x3)x3x2x1

1101

0001

1101

0001

1110

0010

0100

0000

terminal
nodes

non-terminal
nodes

non-terminal
nodes

terminal
nodes

var(i)

hi(i)lo(i)

Comp4151 Ansgar Fehnker

Boolean Functions

Binary Decision Tree

f(0, 1, 1)= (0 ∨ 1) ∧ 1

f(x1, x2, x3)x3x2x1

1101

0001

1101

0001

1110

0010

0100

0000

Comp4151 Ansgar Fehnker

Boolean Functions

Binary Decision Tree

f(1, 0, 1)= (1 ∨ 0) ∧ 1

f(x1, x2, x3)x3x2x1

1101

0001

1101

0001

1110

0010

0100

0000

still exponential size:
2n+1 -1 nodes for n

variables
Comp4151 Ansgar Fehnker

Boolean Functions

Binary Decision Diagrams

Represents boolean functions as directed acyclic

graph with a single initial node

More compact representation than decision trees

Omit duplicated nodes and unnecessary tests.

4

Comp4151 Ansgar Fehnker

Binary Decision Diagrams

Reduction

Rule 1: Share identical terminal nodes.

Comp4151 Ansgar Fehnker

Binary Decision Diagrams

Reduction

Rule 2: Remove redundant tests

Comp4151 Ansgar Fehnker

Binary Decision Diagrams

Reduction

Rule 3: Share identical non-terminal nodes.

Comp4151 Ansgar Fehnker

Binary Decision Diagrams

Reduction

Rules applied iteratively

5

Comp4151 Ansgar Fehnker

Binary Decision Diagrams

Definitions

A BDD is reduced if none of reduction rules can be

applied

Given a variable order x1 < … < xn a BDD is ordered

if for each node i holds

j∈{ lo(i),hi(i) } implies xi < xj

Comp4151 Ansgar Fehnker

Binary Decision Diagrams

x1

x3x2

x3 x4 x2

0 1

BDD OBDD ROBDD

Examples

x1

x2x2

x3 x4 x3

0 1

x1

x2x2

x3 x3 x4

0 1

Comp4151 Ansgar Fehnker

OBDDs

Theorem

Two reduced ordered BDDs with respect to the same

order x1 < … < xn represent the same boolean

function iff they have the same structure.

Furthermore
� A function is a tautology if its ROBDD u is equal to 1.

� A function is a satisfiable if its ROBDD u is not equal to 0

ROBDDs provide a canonical for boolean functions

Comp4151 Ansgar Fehnker

OBDDs

Variable ordering

� Size of an (reduced) OBDD depends on the order

6

Comp4151 Ansgar Fehnker

OBDDs

1 1 2 2 3 3(a b) (a b) (a b)∧ ∨ ∧ ∨ ∧

1 1 2 2 3 3a b a b a b< < < < < 1 2 3 1 2 3a a a b b b< < < < <

Variable ordering

Example:

Comp4151 Ansgar Fehnker

OBDDs

Variable ordering

� Size of an (reduced) OBDD depends on the order

� Checking a variable order for optimality is NP-hard

� For some formulas size is exponential for any order

� In practice these cases rarely occur

� There are good heuristics to find good orders

Comp4151 Ansgar Fehnker

OBDDs

Intermediate Summary

OBDDs provide a compact representation for boolean

functions (most of the times)

Satisfiability and comparison are easy to check

However:

� What about other operations on OBDDs?

� What is the relation with model checking?

Comp4151 Ansgar Fehnker

Operations on OBDDs

Reduce

Bottom-up labelling based on the reduction rules

Label nodes with integer numbers as follows
� two terminal nodes with the same value get the same label

� if lo(i)=hi(i) replace set label(i) to label(lo(i))

� if var(i)=var(j) and lo(i)=lo(j) and hi(i)=hi(i) for some j

set label(i) to label(j)

� otherwise label(i) with next unused integer

After labelling redirect edges bottom-up

7

Comp4151 Ansgar Fehnker

Reduce

Operations on OBDDs

x1

x2x2

x3 x3 x3

1 10 0

0 1 0 1

2 2 3

2 4

5 x1

x2

x3 x3

10

0 1

2 3

4

5

Comp4151 Ansgar Fehnker

Operations on OBDDs

Restrict

Restrict variable x of function f to constant value b,

i.e. replace all occurrences of x by b.

Example
f(x1, x2, x3) = (x1 ∨ x2) ∧ x3
f[0/x2] (x1, x2, x3) = (x1 ∨ 0) ∧ x3 = x1 ∧ x3
f[1/x2] (x1, x2, x3) = (x1 ∨ 1) ∧ x3 = x3

Comp4151 Ansgar Fehnker

Operations on OBDDs

Restrict

Restrict variable x of function f to constant value b,

i.e. replace all occurrences of x by b.

For any node i pointing to a node j with var(j)=x
� repalce pointer of i by lo(j) if b=0

� replace pointer of j by hi(j) if b=1

Comp4151 Ansgar Fehnker

Operations on OBDDs

Restrict

x1

x2

x3

10

f f[0/x2]

x1

x3

10

f[1/x2]

x1

x3

10

reduce(f[1/x2])

x3

10

8

Comp4151 Ansgar Fehnker

Operations on OBDDs

Apply

Given OBDDs Bf and Bg for boolean formulas f and g.

Apply(°, Bf ,Bg) computes the OBDD of f°g

Basic Idea

� Let x be smallest variable of Bf and Bg (i.e root in Bf or Bg)

� Split into two smaller sub-problem for x=0 and x=1.

� Repeat until leaves are reached. Apply ° to the leaves.

Recursive application of Shannon Expansion

f = (¬xi ∧ f[0/xi]) ∨ (xi ∧ f[1/xi])

° can be any
boolean operation:
and, or, xor, …

Comp4151 Ansgar Fehnker

Operations on OBDDs

Apply

Given OBDDs Bf and Bg for boolean formulas f and g.

Apply(°, Bf ,Bg) computes the OBDD of f°g

Basic Idea

� Let x be smallest variable of Bf and Bg (i.e root in Bf or Bg)

� Split into two smaller sub-problem for x=0 and x=1.

� Repeat until leaves are reached. Apply ° to the leaves.

Recursive application of Shannon Expansion

f°g = (¬xi ∧ (f[0/xi]°g[0/xi])) ∨ (xi ∧ (f[1/xi]°g[1/xi]))

Comp4151 Ansgar Fehnker

Operations on OBDDs

Apply

Given OBDDs Bf and Bg for boolean formulas f and g.

Let if and ig be the root nodes of Bf and Bg .

Rule 1:
if if and ig are non-terminal nodes and var(if)= var(ig)

⇒ label current node with var(if)

create a low edge to apply(°,lo(if),lo(ig))
create a hi edge to apply(°,hi(if),hi(ig))

f[0/xi]°g[0/xi]

f[1/xi]°g[1/xi]

Comp4151 Ansgar Fehnker

Operations on OBDDs

Apply

Given OBDDs Bf and Bg for boolean formulas f and g.

Let if and ig be the root nodes of Bf and Bg .

Rule 2:
if if is a non-terminal and var(if)< var(ig) or ig a terminal

⇒ label current node with var(if)

create a low edge to apply(°,lo(if),ig)
create a hi edge to apply(°,hi(if),ig)

f[0/xi]°g

f[1/xi]°g

var(if)<var(ig) implies x=var(if) is not in g, thus g[0/x]=g

9

Comp4151 Ansgar Fehnker

Operations on OBDDs

Apply

Given OBDDs Bf and Bg for boolean formulas f and g.

Let if and ig be the root nodes of Bf and Bg .

Rule 3:
if if is a non-terminal and var(if) > var(ig) or ig a terminal

⇒ Similar to Rule 2

Comp4151 Ansgar Fehnker

Operations on OBDDs

Apply

Given OBDDs Bf and Bg for boolean formulas f and g.

Let if and ig be the root nodes of Bf and Bg .

Rule 4:
if if and ig are terminal nodes labelled bf and bg
⇒ label current node with bf ° bg

0 or 10 or 1

Comp4151 Ansgar Fehnker

Operations on OBDDs

Apply f°g =(¬x1 ∧ (f[0/x1]°g[0/x1]))
∨ (x1 ∧ (f[1/xi]°g[1/x1]))

x1apply(°,a1,b1)

(f[0/x1]°g[0/x1]))
(f[1/x1]°g[1/x1]))

apply(°,a2,b2)

apply(°,a3,b4)

Comp4151 Ansgar Fehnker

Operations on OBDDs

Apply f°g =(¬x1 ∧ (f[0/x1]°g[0/x1]))
∨ (x1 ∧ (f[1/xi]°g[1/x1]))

x1

apply(°,a4,b2)
x2

(f[0/x1][0/x2] °g[0/x1]))

apply(°,a2,b2)

apply(°,a3,b2)

(f[0/x1][1/x2] °g[0/x1]))

10

Comp4151 Ansgar Fehnker

Operations on OBDDs

Apply

x1

apply(°,a4,b2)
x2

apply(°,a4,b4) apply(°,a4,b3)

x3

Comp4151 Ansgar Fehnker

Operations on OBDDs

Apply

x1

apply(°,a4,b2)
x2

apply(°,a4,b4) apply(°,a4,b3)

x3

0°1 0°0

Comp4151 Ansgar Fehnker

Operations on OBDDs

Apply

x1

x2

apply(°,a4,b4)
apply(°,a5,b3)

x3 x3

0°1 0°0

apply(°,a3,b2)

1°0

Reuse earlier results

Comp4151 Ansgar Fehnker

Operations on OBDDs

Apply

x1

x2 x3

apply(°,a4,b4) apply(°,a5,b4)

x3 x3

0°1 0°0 1°0

apply(°,a3,b4)

1°1

11

Comp4151 Ansgar Fehnker

Operations on OBDDs

Apply

x1

x2 x3

x3 x3

0∨1 0∨0 1∨0 1∨1

f ∨ g

apply(∨,a1,b1)

1 0 1 1

Reduce to obtain ROBDD

Comp4151 Ansgar Fehnker

Operations on OBDDs

Negate

Given boolean functions f and reduced OBDD Bf,

compute ¬f, by swapping the leaves.

Comp4151 Ansgar Fehnker

Operations on OBDDs

Exist

Given boolean functions f variable x and reduced

OBDD Bf, compute ∃x.f.

We have

∃x.f = f[0/x] ∨ f[1/x]

⇒ We can use an combination of Restrict and Apply

More efficiency by exploiting common structure in f[0/x] and f[1/x]

Comp4151 Ansgar Fehnker

Operations on OBDDs

O(|F|*|G|*22n) Exists

O(|F|*|G|)Apply

constantNegate

O(F)Reduce

ComplexityOperation

Some complexities

12

Comp4151 Ansgar Fehnker

Model Checking and OBDDs

Another Intermediate Summary

� OBDDs provide a compact representation for
boolean functions (most of the times)

� Satisfiability and comparison are easy to check

� Efficient algorithms for boolean operations

� However:
� What is the relation with model checking?

Comp4151 Ansgar Fehnker

Symbolic CTL Model Checking

Observations
� Boolean function f: {0,1}n → {0,1} can be used to represent

subsets of {0,1}n

� Each finite set (of states) can be mapped to {0,1}n

� Boolean function can be presented as OBDD.

� Given Kripke structure M = (S, S0, R, L)
� Set of states S

� Set of intitial states S0

� Transition relation R is set of pairs of states
� Labelling function L, L-1 maps labels to sets of states

� States, intial states, transition relation and labeling can be
represented as OBDDs

Comp4151 Ansgar Fehnker

Symbolic CTL Model Checking

State space

� Each state can be represented as vector of boolean
values

� The set of initial states can be represented by a
boolean function

Example
� S0 ={(x1,x2)|¬x1 ∧ ¬ x2}

Comp4151 Ansgar Fehnker

Symbolic CTL Model Checking

Transition relation

� Each transition can be represented pairs of states

� The transition relation can be represented by a
boolean function over x1,…, xn, x1´,…, xn´

Example
� (s1,s2) as ((0,0),(0,1))

� ((0,0), (0,1)) satsifies

(¬x1 ∧ ¬ x2 ∧ ¬x‘1 ∧ x‘2)

� R is the disjunction of boolean functions for all transitions

13

Comp4151 Ansgar Fehnker

Symbolic CTL Model Checking

Labelling

� L-1 maps labels to sets of states

� This set can be represented as boolean function

Example
� L-1(p)={(0,0),(0,1),(1,0)}

� L-1(p) is represented by
(¬x1∧¬x2)∨(¬x1∧x2)∨(x1∧¬ x2)= ¬x2∨(¬x1∧x2)

Comp4151 Ansgar Fehnker

Symbolic CTL Model Checking

Symbolic Representation

Explicit representation

Given M = (S, S0, R, L) over set of
atomic proposition AP

Symbolic representation

--11

--11

Comp4151 Ansgar Fehnker

Symbolic CTL Model Checking

OBDD operations

Booelan operators

� [|true|] = S

� [|false|] = ∅
� [| p |] = { s | p ∈ µ(s) }
� [|¬ φ |] = S \ [| φ |]

� [| φ ∧ ψ |] = [| φ |] ∩ [| ψ |]

� OBDD with leaf 1

� OBDD with leaf 0

� OBDD for L-1(p)

� Negate(Bφ)

� Apply(∧, Bφ ,Bψ)

Comp4151 Ansgar Fehnker

Symbolic CTL Model Checking

OBDD operations

Temporal Operators

� [| EX φ |] = { s | ∃ (s,s’) ∈ → such that s’ ∈ [| φ |] }

� ∃x’1,…,x’n(fφ(x’1,…,x’n) ∧ fR(x1,…,xn,x’1,…,x’n))

� Implemented by combination of Apply and ExistsOBDD
for φ

OBDD for transition
relation R

14

Comp4151 Ansgar Fehnker

Symbolic CTL Model Checking

OBDD operations

Temporal Operators

� [| E φ U ψ |] is least fixpont of

fEU (P)=[|ψ|] ∪ ([|φ|] ∩ [|EX P|])

� Implemented by combination of Apply and Exists

Comp4151 Ansgar Fehnker

Symbolic CTL Model Checking

OBDD operations

Temporal Operators

� [| EG φ |] is the greatest fixpoint of

fEG(P) = [|φ|] ∩ [|EX P|]

� Implemented by combination of Apply and Exists

Comp4151 Ansgar Fehnker

Symbolic CTL Model Checking

Summary

� Fixpoint characterization of CTL translates to an
algorithm based on sets

� Set in general and Kripke structures in particular
can be modelled with boolean function

� OBDDs provide a canonical representation of
boolean functions that provides
� Compact representation of sets

� Efficient operations on sets

� Next lecture: SMV

