

Overview

Explicit state CTL

- Bottom-up recursive labelling algorithm
- Linear in the size of Kripke structure and formula

However

Suffers from state explosion problem

Fixpoint characterization of CTL

Leads to set based algorithm

Overview

Semantic of CTL with fixpoints

Given Kripke structure $M=(S, s_0, \rightarrow, \mu)$, with n states, and ϕ in ENF over atomic propositions AP.

- $\begin{array}{l} \label{eq:stars} \left[| \text{true} | \right] = S \\ \left[| \text{false} | \right] = \varnothing \\ \left[| \text{false} | \right] = \{ s \mid p \in \mu(s) \} \\ \left[| \neg \varphi \mid \right] = \{ s \mid p \in \mu(s) \} \\ \left[| \neg \varphi \mid \right] = S \setminus \left[| \varphi \mid \right] \\ \left[| \varphi \wedge \psi \mid \right] = \left[| \varphi \mid \gamma \cap \left[| \psi \mid \right] \\ \left[| \text{EX} \varphi \mid \right] = \{ s \mid \exists (s,s') \in \rightarrow \\ \left[| E \varphi \cup \psi \mid \right] = f_{\text{Eu}}^n(\emptyset) \end{array} \right] \\ \end{array}$
- [| EG φ |] = f_{EG}ⁿ(S)

Boolean Functions

Definition

- A *boolean variable* is variable over values {0,1}.
- A boolean function over n arguments is a function f: $\{0,1\}^n \rightarrow \{0,1\}$
- Two common representations of boolean functions • propositional formula
 - truth table

Comp4151 Ansgar Fe

Boolean Function

Binary Decision Tree

- Represents boolean function as a decision tree
- Non-terminal node i labeled with
 - variable var(i)
- successors lo(i) and hi(i)
- Terminal nodes are labeled 0 or 1
- Fast lookup of $f(x_1, ..., x_n)$ given $x_1, ..., x_n$

Boolean Functions Binary Decision Diagrams Represents boolean functions as *directed acyclic graph* with a single *initial node* More compact representation than decision trees Omit duplicated nodes and unnecessary tests.

Binary Decision Diagrams

Definitions

A BDD is *reduced* if none of reduction rules can be applied

Given a variable order $x_1 < \ldots < x_n \,$ a BDD is ordered if for each node i holds

 $j \in \{ lo(i), hi(i) \} \text{ implies } x_i < x_j$

OBDDs Theorem

Two reduced ordered BDDs with respect to the same order $x_1 < ... < x_n$ represent the same boolean function iff they have the same structure.

Furthermore

A function is a *tautology* if its ROBDD *u* is *equal* to 1.
A function is a *satisfiable* if its ROBDD *u* is *not equal* to 0

ROBDDs provide a canonical for boolean functions

Competifit Annuas Scholars

OBDDs

Variable ordering

• Size of an (reduced) OBDD depends on the order

p4151 Ansgar Fehnker

OBDDs

Variable ordering

- Size of an (reduced) OBDD depends on the order
- Checking a variable order for optimality is NP-hard
- For some formulas size is exponential for any order
- In practice these cases rarely occur
- There are good heuristics to find good orders

Comp4151 Ansgar Fehnker

OBDDs

Intermediate Summary

OBDDs provide a compact representation for boolean functions (most of the times)

Satisfiability and comparison are easy to check

However:

- What about other operations on OBDDs?
- What is the relation with model checking?

Operations on OBDDs

Reduce

Bottom-up labelling based on the reduction rules

Label nodes with integer numbers as follows

- two terminal nodes with the same value get the same label
- if lo(i)=hi(i) replace set label(i) to label(lo(i))
- if var(i)=var(j) and lo(i)=lo(j) and hi(i)=hi(i) for some j set label(i) to label(j)
- otherwise label(i) with next unused integer

After labelling redirect edges bottom-up

Camp4151 Ans aar Fehnker

Restrict

Restrict variable x of function f to constant value b, i.e. replace all occurrences of x by b.

Example

 $\begin{array}{ll} f(x_1,\,x_2,\,x_3) &= (x_1 \lor x_2) \land x_3 \\ f[0/x_2] \left(x_1,\,x_2,\,x_3\right) &= (x_1 \lor 0 \) \land x_3 = x_1 \land x_3 \\ f[1/x_2] \left(x_1,\,x_2,\,x_3\right) &= (x_1 \lor 1 \) \land x_3 = x_3 \end{array}$

Apply

Given OBDDs B_f and B_g for boolean formulas f and g. Apply(°, B_f , B_g) computes the OBDD of f°g

Basic Idea

- Let x be smallest variable of $\mathsf{B}_{\!f}$ and $\mathsf{B}_{\!g}$ (i.e root in $\mathsf{B}_{\!f}$ or $\mathsf{B}_{\!g})$

° can be any boolean operation:

and, or, xor, ..

- Split into two smaller sub-problem for x=0 and x=1.
- Repeat until leaves are reached. Apply $^\circ$ to the leaves.

$\begin{array}{l} \mbox{Recursive application of $Shannon Expansion$} \\ f = (\neg x_i \wedge f[0/x_i]) \ \lor \ (x_i \wedge f[1/x_i]) \end{array}$

Operations on OBDDs

Apply

Given OBDDs B_f and B_g for boolean formulas f and g. Apply(°, B_f , B_a) computes the OBDD of f°g

Basic Idea

- Let x be smallest variable of B_{f} and B_{g} (i.e root in B_{f} or $\mathsf{B}_{\mathsf{g}})$
- Split into two smaller sub-problem for x=0 and x=1.
- Repeat until leaves are reached. Apply $^{\circ}$ to the leaves.

Recursive application of Shannon Expansion

 $f^{\circ}g = (\neg x_{i} \land (f[0/x_{i}]^{\circ}g[0/x_{i}])) \lor (x_{i} \land (f[1/x_{i}]^{\circ}g[1/x_{i}]))$

Apply

Given OBDDs B_{f} and B_{g} for boolean formulas f and g. Let i_f and i_q be the root nodes of B_f and B_q .

Rule 3:

if i_f is a non-terminal and $var(i_f) > var(i_g)$ or i_g a terminal \Rightarrow Similar to Rule 2

Operations on OBDDs

Apply

Given OBDDs B_{f} and B_{g} for boolean formulas f and g. Let i_f and i_q be the root nodes of B_f and B_q .

Δ

Rule 4: if i_f and i_q are terminal nodes labelled b_f and b_g

 \Rightarrow label current node with $b_f \circ b_g$ 0 or 1

Operations on OBDDs Apply G apply(°,a1,b1) $(\mathbf{x}_1)\mathbf{b}_1$ (x₁ apply(°,a3,b4) apply(°,a2,b2) (f[1/x₁]°g[1/x₁])) $(f[0/x_1]^{\circ}g[0/x_1]))$ 0 0

Exist

Given boolean functions f variable x and reduced OBDD B_{fr} , compute $\exists x.f.$

We have

 $\exists x.f = f[0/x] \lor f[1/x]$

 \Rightarrow We can use an combination of *Restrict* and *Apply*

More efficiency by exploiting common structure in f[0/x] and f[1/x]

Operations on OBDDs Some complexities

Operation	Complexity
Reduce	O(F)
Negate	constant
Apply	O(F * G)
Exists	O(F * G *2 ²ⁿ)

11

Model Checking and OBDDs

Another Intermediate Summary

- OBDDs provide a compact representation for boolean functions (most of the times)
- Satisfiability and comparison are easy to check
- Efficient algorithms for boolean operations

However:

• What is the relation with model checking?

Symbolic CTL Model Checking

Observations

- Boolean function f: $\{0,1\}^n \to \{0,1\}$ can be used to represent subsets of $\{0,1\}^n$
- Each finite set (of states) can be mapped to {0,1}ⁿ
- Boolean function can be presented as OBDD.
- Given Kripke structure M = (S, S₀, R, L)
 - Set of states S
 - Set of intitial states S₀
 - Transition relation R is set of pairs of states
 - Labelling function L, L⁻¹ maps labels to sets of states
- States, intial states, transition relation and labeling can be represented as OBDDs

Symbolic CTL Model Checking

State space

Example

- Each state can be represented as vector of boolean values
- The set of initial states can be represented by a boolean function

Symbolic CTL Model Checking Transition relation

• Each transition can be represented pairs of states

• R is the disjunction of boolean functions for all transitions

• The transition relation can be represented by a boolean function over $x_1, ..., x_n, x_1', ..., x_n$

Example

(s₁,s₂) as ((0,0),(0,1))

 ((0,0), (0,1)) satsifies $(\neg x_1 \land \neg x_2 \land \neg x'_1 \land x'_2)$

 $\underbrace{ \begin{array}{c} \begin{array}{c} p \\ \hline S_1 \end{array}}^{p} \underbrace{ \begin{array}{c} \end{array}}_{(0,0)} \underbrace{ \begin{array}{c} p \\ (0,1) \end{array}}_{(0,1)} \underbrace{ \begin{array}{c} p \\ (1,0) \end{array}}_{(1,0)} \underbrace{ \begin{array}{c} p \\ (1,1) \end{array}}_{(1,1)} r \\ \end{array} }^{p,r} \underbrace{ \begin{array}{c} r \\ S_4 \end{array}}_{r} r \\ \end{array}$

Symbolic CTL Model Checking

OBDD operations

Temporal Operators

- [| E ϕ U ψ |] is least fixpont of f_{EU}(P)=[| ψ |] \cup ([| ϕ |] \cap [|EX P|])
- Implemented by combination of Apply and Exists

Symbolic CTL Model Checking

OBDD operations

Temporal Operators

- [| EG φ |] is the greatest fixpoint of $f_{EG}(P) = [|\varphi|] \cap [|\mathsf{EX} \ P|]$
- Implemented by combination of Apply and Exists

Symbolic CTL Model Checking

Summary

- Fixpoint characterization of CTL translates to an algorithm based on sets
- Set in general and Kripke structures in particular can be modelled with boolean function
- OBDDs provide a canonical representation of boolean functions that provides
 - Compact representation of setsEfficient operations on sets
- Next lecture: SMV