

The imagination driving Australia's ICT future.
Outline
- Introduction
- Basic Definitions
- Data Flow Analysis
- Abstract Interpretation
- Syntactical Model Checking
- Summary

The imagination driving Australa's ICT future.
The Trouble with Software
The state space of programs is in theory infinite.
Computation depends on
- integers
- reals
- etc.
In reality it is finite, e.g., 32-bit representations, which is still
practically infinite when exploring all combinations.

The imagination driving Australia's ICT future.
Decidability
Properties on infinite state spaces are
typically undecidable, i.e., there is no
general algorithm to decide if they are
true or false.
Rice's theorem: Any nontrivial property
about the language recognized by a
Turing machine is undecidable.
But we can still attempt to give
useful approximate solutions.

The imagination diving Australia's ICT future.

Example: Finite Lattices

The imgination diving Austrata's ICT tuture.
Terms
Classical Data Flow Analysis is concerned about which data
reaches which program point. The analysis is performed on
program's CFG and expressed as an (in)equality system over a
finite lattice.
Typical examples are:
- liveness
- available expressions
- very busy expressions
- reaching definitions
We will go trough each of them.

The imagination driving Australia's ICT future. - - Marioorai	
Liveness	
A variable is live before a program point if it will be read in the remaining program execution without being written first.	
```fun(n) { var f; f=1; while (n>0) { f=f*n; n=n-1 } return f; }```	Which variables are live at which locations? Which are not?


Liveness	
Any analysis must find out the set of live variables for each location. We model the domain of live variables by the lattice ( $2^{\text {Vars }}, \subseteq$ ).	
```fun(n) { var f; f=1; while ( }n>0\mathrm{ ) { f=f*n; n=n-1 } return f; }```	How does the lattice ( $2^{\text {Vars }}, \subseteq$ ) look like? Why is it a lattice?   Vars is the set of variables occurring in a program.


The imagination driving Australa's ICT futura.
Questions
- Can we approximate (without executing the program) the
set of live variables algorithmically?
- How does the set depend on our syntax?
- Can we define rules for each construct?
- How can rules lead to something that we can compute?

The imagination dirving Australia's ICT future.	- national
Question	
	let live(v) denote the set of variables live before location v . Can we define rules just depending on the current node and its predecessors or successors?

The imagination diriving Australa	- - national
Equation System	
	let live(v) denote the set of variables live before location v . $\begin{aligned} & \text { live(1) = live(2) } \\ & \text { live(2) = live(3) } \backslash\{f\} \\ & \text { live(3) = (live(4) } \cup \text { live (6) }) \cup\{n\} \\ & \text { live(4) }=(\text { live(5) } \backslash\{f\}) \cup\{f, n\} \\ & \text { live(5) }=(\operatorname{live(3)~} \backslash\{n\}) \cup\{n\} \\ & \text { live(6) }=\{ \} \end{aligned}$

The imagination driving Australia's ICT future,	- national
Fixed Point	
The right hand-side of each equation is monotone, i.e., we can compute the fixed point of ES. We are interested in the least fixed point. Least fixed point: start with $\}$ greatest start with Vars.	let live(v) denote the set of variables live before location v. $\begin{aligned} & \text { live }(1)=\operatorname{join}(1) \backslash\{f\} \\ & \text { live }(2)=\operatorname{join}(2) \backslash\{f\} \\ & \text { live }(3)=\operatorname{join}(3) \cup\{n\} \\ & \text { live(4) }=(j o i n(4) \backslash\{f\}) \cup\{f, n\} \\ & \text { live(5) }=(j o i n(5) \backslash\{n\}) \cup\{n\} \\ & \text { live(6) }=\{ \} \end{aligned}$

The imagination driving Australa's ICT future.	- national
Computing Fixed Point	
Computation on the board.	let live(v) denote the set of variables live before location v . $\begin{aligned} & \text { live }(1)=\text { live(2) } \\ & \text { live(2) = live(3) } \backslash\{f\} \\ & \text { live }(3)=(\text { live }(4) \cup \operatorname{live}(6)) \cup\{n\} \\ & \text { live(4) }=(\operatorname{live(5)~} \backslash\{f\}) \cup\{f, n\} \\ & \text { live(5) }=(\operatorname{live}(3) \backslash\{n\}) \cup\{n\} \\ & \text { live(6) }=\{ \} \end{aligned}$

The imagination driving Australia's ICT future.	- - maromal
Least Fixed Point Solution	
	let live(v) denote the set of variables live before location v . $\begin{aligned} & \text { live }(1)=\{n\} \\ & \text { live }(2)=\{n\} \\ & \text { live }(3)=\{f, n\} \\ & \text { live(4) }=\{f, n\} \\ & \text { live }(5)=\{f, n\} \\ & \text { live }(6)=\{ \} \end{aligned}$

The imagination diving Australiás ict future.
Intermediate Summary
Seen so far:
- data flow analysis problem can be expressed in terms of
fixed point over equations
- equations depend on syntax of program points and what is
coming in/going out
- many ways to compute fixed point
We have seen Join as being union of successors and
computation of least fixed point. This is not always so ...

The imagination driving Australa's ICT future.
Available Expressions
An expression is available after a program point if its current
value has been evaluated before and none of its variables
are overwritten. (Good for optimizations)
\qquadfun(n) $\{$ var $f ;$ $f=1 ;$ while ($n>0$) $f=f \times n ;$ $n=n-1$ $\}$ return $f ;$ $\}$ Which expressions are available at which locations? Which are not?

The imagination driving Australa's ICT future.	
Available Expressions	
Our analysis must find out the set of available expressions for each location. We model the domain of available expression by the lattice ($2^{\text {Expr }}, \subseteq$).	
	How does the lattice ($2^{\mathrm{Expr}}, \subseteq$) look like? Why is it a lattice? Expr is the set of expressions occurring in a program.

The imagination driving Austr	national
Equation System	
	let avail(v) denote the set of expressions available after location v. $\begin{aligned} & \text { avail(1) }=\{ \} \\ & \text { avail(2) }=\left(\operatorname{avail}(1) \backslash\left\{f^{*} n\right\}\right) \cup\{1\} \\ & \text { avail(3) }=(\operatorname{avail}(2) \cap \operatorname{avail}(5)) \cup\{n>0\} \\ & \text { avail(4) }=\left(\operatorname{avail}(3) \backslash\left\{f^{*} n\right\}\right) \cup\left\{f^{*} n\right\} \\ & \text { avail(5) }=(\operatorname{avail}(4) \backslash\{n-1\}) \cup\{n-1\} \\ & \text { avail(6) }=\operatorname{avail}(3) \end{aligned}$

The imagination driving Australia's ICT future,	
Join/Fixed Point	
	let avail(v) denote the set of variables available after location v. We can use the abbreviation join $(v)=\bigcap_{w \in \operatorname{pred}(v)}$ avail(w) to see we have again a monotone framework. This time we compute the greatest fixed point, as we like to have the maximum number of available expressions.

The imagination driving Australia':	- national
Greatest Fixed Point Solution	
	let avail(v) denote the set of expressions available after location v . $\begin{aligned} & \text { avail(1) }=\{ \} \\ & \text { avail(2) }=\{1\} \\ & \text { avail(3) }=\{n>0\} \\ & \text { avail(4) }=\left\{n>0, f^{*} n\right\} \\ & \text { avail(5) }=\{f \star n, n-1\} \\ & \text { avail(6) }=\{n>0\} \end{aligned}$

The imagination driving Australa's ICT future.	
Very Busy Expressions	
An expression is very busy before a program point if it definitely will be evaluated again before its value changes.	
	Which expressions are very busy at which locations? Which are not?

The imagination driving Australia's ICT future.
Very Busy Expressions

Our analysis must find out the set of very busy expressions for each location. We model the domain of very busy expression by the lattice (2 Expr,\subseteq).

The imagination driving Australia's ICT future.	
Reaching Definitions	
Our analysis must find out the set of reaching assignments for each location. We model the domain of reaching definitions by the lattice ($2^{\text {Assign }}, \subseteq$).	
```fun(n) { var f; f=1; while ( }n>0\mathrm{ ) { f=f*n; n=n-1 } return f; }```	How does the lattice ( $2^{\text {Assign }}, \subseteq$ ) look like? Why is it a lattice?   Assign is the set of assignments occurring in a program.


The imagination driving Austr	arional
Equation System	
	let reach(v) denote the set of assignments may define variable values after location $v$. $\begin{aligned} & \operatorname{reach}(1)=\{ \} \\ & \operatorname{reach}(2)=(\operatorname{reach}(1) \backslash\{f=1\}) \cup\{f=1\} \\ & \text { reach }(3)=\operatorname{reach}(2) \cup \operatorname{reach}(5) \\ & \text { reach(4) }=(\operatorname{reach}(3) \backslash\{f=f * n, f=1\}) \cup\{f=f * n\} \\ & \text { reach(5) }=(\operatorname{reach}(4) \backslash\{n=n-1\}) \cup\{n=n-1\} \\ & \text { reach(6) }=\operatorname{reach}(3) \end{aligned}$


The imagination driving Australia's ICT future.	national
Join/Fixed Point	
	let reach $(v)$ denote the set of assignments may define variable values after location $v$.   We can use the abbreviation join $(v)=U_{w \in \operatorname{pred}(v)}$ reach(w) to see we have again a monotone framework.   This time we compute the least fixed point again.


The imagination driving Australia's ICT future.	national
Least Fixed Point Solution	
	let reach(v) denote the set of assignments may define variable values after location $v$. $\begin{aligned} & \text { reach }(1)=\{ \} \\ & \text { reach }(2)=\{f=1\} \\ & \text { reach }(3)=\{f=1, f=f * n, n=n-1\} \\ & \text { reach(4) }=\{f=f \star n, n=n-1\} \\ & \text { reach(5) }=\{f=f * n, n=n-1\} \\ & \text { reach(6) }=\{f=1, f=f * n, n=n-1\} \end{aligned}$


The imagination diving Australia's ict future.
Summary Data Flow Analysis
- we have seen how to compute approximate solutions (we
do not know if all the paths are executed!) to data flow
problems
- Join can be intersection or union
- analysis has forward or backward nature
- depending on the problem least or greatest fixed point


The imagination driving Austratia's ICT future.
Rules of Thumb
forward analysis: computes information about past behavior
backward analysis: computes information about future
behavior
must analysis: information that must be true (on all paths) and
computes under-approximation
may analysis: information that may be true (on at least one
paths) and computes over-approximation


The imagination driving Australia's ICT future.
Abstract Interpretation
The Rough Guide


The imagination driving Australia's ICT future.
Introduction
The idea
Abstract Interpretation (AI) provides appropriate means to relate
some concrete world (domain) with an abstract world.
The applications and implications
Far reaching, ranging from comparing program semantics to
program analysis.
Origin
First developed by Cousot\&Cousot (1977/78).



The imagination driving Australa's ICT future.	
Example (Interval AI)	
1. Structure	
Sets of integers	Intervals
$\{2\}$	$[2,2]$
$\{2,3,4\}$	$[2,4]$
$\{1,3,9\}$	$[1,9]$
$x \in 2^{\text {lnt }}$	smallest interval comprising $x$



The imagination driving Australia's ICT future.
Example (Interval AI)

## 2. Operations

lattice (non finite)	lattice (non finite)
$\left(2^{\operatorname{lnt}, \subseteq)}\right.$	(Intervals(Int), Б—)

Concrete world: $\{2,5,6\}+\{2,3\}=\{4,5,7,8,9\}$
Abstract world: $[2,6]+[2,3]=[4,9]$
a) Introduce matching operator in abstract world for every operator in concrete world.
b) Check it satisfies safe approximation

The imagination driving	- - national
Application	
We like to c (collecting s ```var f, n; n=3; f=1; while ( }n>0) f=f*n; n=n-1 } return f;```	


The imagination driving Aus	's ICT future.	nation
Application		
	before each location   2: f: $\{-\infty, \ldots .,+\infty\}$   3: f: $\{-\infty, \ldots .,+\infty\}$   4: f: $\{1\}$   5: f: $\{1,3,6\}$   6: f: $\{1,3,6\}$   7: $\mathrm{f}:\{1,3,6\}$	ariables might be as follows:   $\mathrm{n}:\{-\infty, \ldots,+\infty\}$   n: $\{3\}$   n: $\{3\}$   $\mathrm{n}:\{1,2,3\}$   n: $\{0,1,2,3\}$   n: $\{0\}$



The imagination driving Aus	ICT future. $0 \underbrace{\text { national }}$
Application	
	Problems:   1. We might need infinite space to store values.   2. We might not be able to compute them due to non-termination.   Solution:   1. can be overcome by using interval Al (overapproximation of all values)   2. not that easy: interval lattice has infinite width (not a problem) and infinite height (problem!).

Acceleration \begin{tabular}{l}

AI: | We have relation between abstract |
| :--- |
| and concrete domain. |
| We have relation between abstract and |
| concrete operators. | <br>

In order to deal with infinite lattices (i.e.
to compute a fixed point in finite time) we
introduce an extra operator that can "jump"
infinitely high.

Such an acceleration operator is called widening operator. Sometimes fiture. <br>
people speak of dynamic approximation operator.
\end{tabular}

The imagination driving Australia's ICT future.	- mational
Application	
	Idea:   1. if variable value increased compared to previous iteration jump to $+\infty$, if decreased to $-\infty$.   2. goto 2   Since our operations are monotone this is safe.


The imagination driving Aus	I's ICT future.	- - national
Application		
	Result: $\begin{array}{ll} \text { 2: f: }[-\infty,+\infty] & \mathrm{n}:[-\infty,+\infty] \\ \text { 3: } \mathrm{f:}:[-\infty,+\infty] & \mathrm{n}:[3,3] \\ \text { 4: f: }[1,1] & \mathrm{n}:[3,3] \\ \text { 5: f: }[1,+\infty] & \mathrm{n}:[-\infty, 3] \\ \text { 6: }:[1,+\infty] & \mathrm{n}:[-\infty, 3] \end{array}$   after first acceleration	



The imagination driving Australa's ict tutura.
Summary
- Al relates abstract and concrete worlds (structure +
operations)
- termination/safe approximation can be enforced by
acceleration techniques
There are domains that capture more information, e.g.,
ployhedra.
Al is good for range approximation, i.e., array access, range
check of operations, general buffer overflows.



The imgination diving Austratiós ICT tuture.
Introduction
Syntax gives us some information:
- when are variable is used
- when a variable is declared
- when a variable is modified
- etc.
Can we make use of it to find bugs in programs?




The imagination driving Australia's ICT future,		
Model Checking Syntax		
	declaration_f declaration_n   modified_n   modified_f   used_n   used_n used_f modified_f   used_n modified_n	Yes, e.g.:   AG (delclaration $_{\mathrm{f}} \Rightarrow$ EF used ${ }_{\mathrm{f}}$ )   AG $\left(\right.$ modified $_{n} \Rightarrow$ EF used $\left.{ }_{n}\right)$   also if variables are initialized, certain protocols are respected, locks are released etc.   But: Abstraction is sometimes neither sound nor complete.


The imagination diring Australia's ICT future,
Summary
- model checking syntax is good for finding bugs
- not so good for showing the absence of bugs/verification
- very efficient
- easy to use



| The imagination diving Australiás ICT future. |
| :--- | :--- |
| Next Week |
| Model Checking Real-Time Systems |
|  |
|  |
|  |
|  |

