

Overview

Model Checking Approaches

- Explicit State Model Checking
- Symbolic Model Checking
- Bounded Model Checking
- Automatic Abstraction Refinement
- Correctness of software, hardware and protocols
- Correctness for finite state systems

Overview Time critical systems Correctness of embedded and distributed systems • correctness depends result of a computation • and on the timing of events, computations, responses

Time critical systems

- railway crossing
- process control
- consumer electronics
- automotive and avionics
- wireless

Overview

Next two weeks

Model checking real-time systems

Themes

- Decidability
 - Efficient implementations and data structuresApplication examples

Today

- Real or continuous time vs discrete time models
- Syntax and semantics of timed automata
 Example: Biphase Mark Protocol

Discrete Time vs. Real Time

Discrete time

ġ

Finite model of time

time ranges over the natural numbers
events can only occur at integer times
time advances by multiples of a smallest time step
use a special tick event to synchronize

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

Discrete Time vs. Real Time

Real (or continuous) time

Infinite model of time

9

- time ranges over the positive reals
- events can take place at any point in (real) time
- multiple events can take place at the same point in time
- time may advance by any positive real amount
- no smallest time step
- timers and delays modelled using real valued variables (clocks)

Discrete Time vs. Real Time Example Intelligent light switch Press button twice quickly to switch to bright Press it once to switch to dimmed • If light is on or dimmed, pressing button switches light off

Real-Time vs Real-Time The term *real-time* often refers to • supervisory systems that update information at the same rate as they receive data • operating systems that employ reliable and predicable scheduling to minimize the number of missed deadlines, tardiness, ... • control systems that react to input within some small upper

- limit on the response time
- simulators that ensure that simulation-time proceeds at the same rate as the simulated time.

These use typically a discrete model of time

Real-time models with real-valued clock-variables

Outline

Today

- Real or continuous time vs discrete time models
- Syntax and semantics of timed automata
 - Syntax of timed automata
 - Invariants and guards
 - Semantics of timed automata
 - Executions and runs
 - Reachability
 - Timed Languages
 - Composition
- Example: Biphase Mark Protocol

Comp4151 Ansgar Fehnl

4

	Syntax of Timed Automata				
	Definitions				
120	Clocks				
	A clock is a variable ranging over the positive reals $R_{ m >0}$				
1	Constraints				
YA	$\varphi := \varphi \land \varphi \mid \neg \varphi \mid x \leq n \mid x < n \mid x - y \leq m \mid x - y < m$				
	where $x, y \in C, n \in \mathbb{Z}$				
	 Restriction to simple and diagonal constraints to ensure decidability Constraints of the form x+y<n li="" make="" model<="" would=""> Each TA with diagonal constraints are called diagonal-free Each TA with diagonal constraints is bisimilar to diagonal constraints </n>				
12	Company Arabigar Permiter				

Syntax of Timed Automata

Definitions

Clock valuations A clock valuation v is a mapping $C \rightarrow R_{20}$.

Increment

For $d \in \mathbf{R}_{\geq 0}$ valuation v+d maps clock x to v(x) + d.

Reset

Given $r \subseteq C$ valuation v[r:=0] maps x to 0 if $x \in r$ and v(x) otherwise

Comp4151 Ansgar Fehnke

Syntax of Timed Automata Syntax of Timed Automata Definition Definition Timed Automata Timed Automata (cont) Given a set C of clocks a *timed automaton* is a tuple • $E \subseteq Loc \times \Psi(C) \times \Sigma \times 2^C \times Loc$ a set of edges (l,g,σ,r,l') with $(Loc, l_0, \Sigma, E, Inv)$, where source location 1 • Loc is a finite set of locations guard g l₀ is the initial location • label σ (used for synchronization) • Σ is a set of labels • reset set r target location l' ${\scriptstyle \bullet}$ Inv: Loc $\rightarrow \Psi \left(C \right)$ a mapping from locations to invariants (to be continued)

Runs and Executions

Run (or execution)

 $\begin{array}{ll} A \mbox{ finite or infinite sequence of transitions} \\ (l_0,v_0) & \underline{a_0} & (l_1,v_1) & \underline{a_1} & (l_2,v_2) & \underline{a_2} & (l_3,v_3) & \underline{a_3} & \dots \\ \mbox{with initial state } (l_0,v_0) \mbox{ and } a_i \in \Sigma \cup \pmb{R_{\geq 0}} \end{array}$

Dense time

Super dense time

Timed Languages

Definitions

- A timed action is a pair (σ,t) with $\sigma \in \Sigma$, $t \in \mathbf{R}_{\geq 0}$
- A timed trace of timed automaton A is a finite or infinite sequence (σ_{1},t_{1}) , (σ_{2},t_{2}) , (σ_{3},t_{3}) ,... with $t_{0} \leq t_{1} \leq t_{2} \leq ...$ s.t there exist a run

• The timed language of A is the set of all timed traces of A.

• The untimed language is the restriction of the timed language to $\Sigma_{\rm c}$

Comp4151 Ansgar Fehnker

Composition

- Asynchronous and distributed systems modelled by parallel composition of timed automata
- Timed automata (typically) closed under parallel composition
- Several competing definitions of parallel composition
 Synchronization on common action labels [Alur]

Composition

- Asynchronous and distributed systems modelled by parallel composition of timed automata
- Timed automata (typically) closed under parallel composition
- Several competing definitions of parallel composition
 Synchronization on common action labels [Alur]
 - Timed I/O automata [Lynch et al]
 - Uppaal's handshake synchronization
 - Uppaal's broadcast channels

Composition

- Asynchronous and distributed systems modelled by parallel composition of timed automata
- Timed automata (typically) closed under parallel composition
- Several competing definitions of parallel composition
 Synchronization on common action labels [Alur]
 - Synchronization on common action
 Timed I/O automata [Lynch et al]
 - Uppaal's handshake synchronization
- Uppaal's broadcast channels
- Many others
- Synchronization via shared variables

Outline

Today

- Real or continuous time vs discrete time models
- Syntax and semantics of timed automata
 - Syntax of timed automata
 - Invariants and guards
 - Semantics of timed automata
 - Executions and runs
 - Reachability
 - Timed Languages
 - Composition
- Example: Bi-phase mark protocol

Biphase Mark Protocol

- Convention for representing both a string of bits and clock edges in a square wave.
- Used, for instance, in:
 - Intel 82530 Serial Communications Controller
 - Ethernet
 - Manchester encoding
 - Optical communications
 - Satellite telemetry applications
- Model based on work in [Vaandrager and de Groot]

Example

Terminology

 Receiver should sample at the beginning of mark subcell, and so within the code subcell

Comp415

Example

Assumptions

- Sender and receiver have each its own clocks
- Clocks with drift and jitter
- The signal takes some time after a change in voltage at stabilize.
- Sampling within this period many produce any value.
- The receiver may samples non-deterministically at some point during clock cycle.

Constants				
Constants for a typical co • length cell • length mark subcell • sampling point • min length clock cycle • max length unstable edge • max sample delay 4 clocks (sender, receiver 5 channels (put,get,edge,	nfiguration 32 clock cycles 16 clock cycles 23 clock cycles 81 time units 100 time units 81 time units <81 time units ; wire, sample tick, tock)	message1 cell cigesi signals senti code subcell ampling distance		
Comp4151 Ansgar Fehnker				

