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Overview

Model Checking Approaches

� Explicit State Model Checking

� Symbolic Model Checking

� Bounded Model Checking

� Automatic Abstraction Refinement

� Correctness of software, hardware and protocols

� Correctness for finite state systems
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Overview

Time critical systems 

Correctness of embedded and distributed systems 

� correctness depends result of a computation

� and on the timing of events, computations, responses

Time critical systems

� railway crossing

� process control

� consumer electronics

� automotive and avionics

�wireless 
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Overview

Next two weeks

Model checking real-time systems 

Themes
�Decidability
� Efficient implementations and data structures
� Application examples

Today
� Real or continuous time vs discrete time models
� Syntax and semantics of timed automata
� Example: Biphase Mark Protocol
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Discrete Time vs. Real Time

Discrete time

Finite model of time
� time ranges over the natural numbers

� events can only occur at integer times

� time advances by multiples of a smallest time step

� use a special tick event to synchronize

Comp4151 Ansgar Fehnker

Discrete Time vs. Real Time

Off Dimmed Bright
press? press?

press?

press?

Example

Intelligent light switch
� Press button twice quickly to switch to bright

� Press it once to switch to dimmed

� If light is on or dimmed, pressing button switches light off
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Discrete Time vs. Real Time

Off Dimmed Bright
press?

press?

press?

press?

discrete ticks

Dimmed’
tick?

tick? tick?

tick?

Example

Intelligent light switch
� Press button twice quickly to switch to bright

� Press it once to switch to dimmed

� If light is on or dimmed, pressing button switches light off
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Discrete Time vs. Real Time

Discrete time model
+ tick-event just a simple addition to finite state models

+ standard model checkers and temporal logic for verification

- delays are modelled explicitly

- synchronization either to strict or to loose

⇒suitable to model synchronous systems that evolve in lock-step

⇒inadequate for many asynchronous distributed systems.

Example: wireless networks
� local clocks with drift and jitter
� discrete time may introduce absent synchrony 
� however, nodes do synchronize on time
� complete asynchronicity inadequate as well
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Discrete Time vs. Real Time

Real (or continuous) time

Infinite model of time 
� time ranges over the positive reals

� events can take place at any point in (real) time

�multiple events can take place at the same point in time

� time may advance by any positive real amount

� no smallest time step

� timers and delays modelled using real valued variables 
(clocks) 
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Discrete Time vs. Real Time

Off Dimmed Bright
press? press?

press?

press?

Example

Intelligent light switch
� Press button twice quickly to switch to bright

� Press it once to switch to dimmed

� If light is on or dimmed, pressing button switches light off
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Discrete Time vs. Real Time

Off Dimmed Bright
press?

press?

press?

press?

x:=0

x>=1

x<=1

clock variable

Example

Intelligent light switch
� Press button twice quickly to switch to bright

� Press it once to switch to dimmed

� If light is on or dimmed, pressing button switches light off
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Discrete Time vs. Real Time

Continuous time model
+ clock-variables natural to model timers and delays

+ delay is modelled implicitly

- real-valued variables lead to infinite state system

- model checking algorithms become more complicated

⇒ suitable to model systems that synchronize on real time

⇒ too much good for completely discrete systems.

Example: Bi-Phase mark protocol
� protocol for sending bits as square wave
� local clocks for sender and receiver
� clock drift and non-deterministic delay
� to be discussed later in this lecture
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Real-Time vs Real-Time

The term real-time often refers to 
� supervisory systems that update information at the same rate 
as they receive data

� operating systems that employ reliable and predicable 
scheduling to minimize the number of missed deadlines, 
tardiness, …

� control systems that react to input within some small upper 
limit on the response time 

� simulators that ensure that simulation-time proceeds at the 
same rate as the simulated time.

These use typically a discrete model of timeThese use typically a discrete model of time

≠≠≠≠≠≠≠≠
RealReal--time models with realtime models with real--valued clockvalued clock--variablesvariables
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Outline

Today

� Real or continuous time vs discrete time models

� Syntax and semantics of timed automata
� Syntax of timed automata

� Invariants and guards

� Semantics of timed automata

� Executions and runs

� Reachability 

� Timed Languages

� Composition

� Example: Biphase Mark Protocol
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Introduction to Timed Automata

The basics

� A finite control graph with locations and edges

� Instantaneous transitions along edges, 

� Delays while in location

l0 l1
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Introduction to Timed Automata

The basics

� Real-valued clocks, that increase at the same rate

� Constraints on clocks as guard on edges

� Clock resets to measure time between transitions

� Invariants in locations to enforce progress

� Labels for synchronization

l0 l1
x ≤ 12x:=0, y:=0

y≥1
on
x:=0
y:=0

x ≥ 10

on

on

guard

label

reset

invariant
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Syntax of Timed Automata

Definitions

Clocks 

A clock is a variable ranging over the positive reals RRRR≥≥≥≥0

Constraints
Given a set of Clocks C let Ψ (C)  be defined by

φ:= φ ∧ φ | ¬ φ | x  ≤ n |  x < n | x - y  ≤ m | x – y <  m

where x, y ∈ C, n ∈ N, N, N, N, m ∈ Z, Z, Z, Z, 

• [AD94] defines TAs without 
diagonal constraints

• TAs without diagonal constraints 
are called diagonal-free

• Each TA with diagonal constraints 
is bisimilar to diagonal-free TA

• Restriction to simple and  
diagonal constraints to 
ensure decidability

• Constraints of the form 
x+y<n would make model 
checking TAs undecidable
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Syntax of Timed Automata

Definitions

Clock valuations
A clock valuation v is a mapping  C → RRRR≥≥≥≥0 . 

Increment

For  d ∈ RRRR≥≥≥≥0  valuation v+d maps clock x to v(x) + d.

Reset
Given r ⊆ C valuation v[r:=0] maps x to 0 if  x ∈ r

and v(x) otherwise
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Syntax of Timed Automata

Definition

Timed Automata

Given a set C of clocks a timed automaton is a tuple

(Loc,l0,Σ,E,Inv),where 

� Loc is a finite set of locations

� l0 is the initial location

� Σ is a set of labels

(to be continued)
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Syntax of Timed Automata

Definition 

Timed Automata (cont)

� E ⊆ Loc x Ψ (C)  x Σ x 2C x Loc a set of edges (l,g,σ,r,l’) with
� source location l

� guard g

� label σ (used for synchronization)

� reset set r

� target location l’

� Inv: Loc → Ψ (C)  a mapping from locations to invariants
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Guards and Invariants

� Guards enable progress, invariants enforce progress

l0 l1
x ≤ 12x:=0,

10 ≤ x 

on

on

l0 l1
x:=0,

10 ≤ x ≤ 12

on

on

x

time

12

10

time

12

10

X
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Guards and Invariants

� Guards enable progress, invariants enforce progress

� Invariants may lead to deadlocks

l0 l1
x ≤ 13x:=0,

10 ≤ x ≤ 12 

on

on

l0 l1
x:=0,

10 ≤ x ≤ 12

on

on

x

time

12

10

time

12

10

?
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Guards and Invariants

� [AD90] used a Muller acceptance condition to ensure progress

� [Henzinger et al] introduced Timed Safety Automata with 
invariants

l0 l1
x ≤ 12x:=0,

10 ≤ x 

on

on

l0 l1
x:=0,

10 ≤ x ≤ 12

on

on

x

time

12

10

time

12

10

X

This became the standard 
definition of TAs

No 
deadlocks

May 
deadlock
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Semantics

Definition

The operational semantics of a timed automaton 

(Loc,l0,Σ,E,Inv) is given as a (timed) transition system

with

� set of states S = { (l,v) | l ∈ Loc, v |= Inv(l) }
� initial state s0  =(l0,0)

(to be continued)
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Semantics

Definition (cont)

� transition relation R ⊆ S x Σ ∪ RRRR≥≥≥≥0  x S  that contains the 
following

� discrete transitions (l,v)    σ (l‘,v’) 

if there exist (l,g,σ,r,l’)∈ E s.t. v|= g, and v[r:=0] = v’

� delay transitions  (l,v)    d (l,v +d)
for d ∈ RRRR≥≥≥≥0  if  for all 0 ≤ d’ ≤ d holds v + d |= Inv(l)
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Runs and Executions

Run (or execution)

A finite or infinite sequence of transitions

(l0,v0)      a0 (l1,v1) a1 (l2,v2) a2 (l3,v3)     a3   .....

with initial state (l0,v0)  and ai ∈ Σ ∪ RRRR≥≥≥≥0 

Dense time

Transitions may occur at any point in real time

(l0,v0)   √2 (l1,v1) on (l2,v2) π (l3,v3)     42   .....

Super dense time

Multiple transitions may occur at any point in real time

(l0,v0)   on (l1,v1) 0 (l2,v2) on (l3,v3)     on   .....
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Zeno

Time divergent

An infinite run is time-divergent if it has an infinite 
number of delays di such that 

lim Σ di = ∞
Counterexample

(l0,v0)   12   (l0,v1)   1/2   (l0,v2)   1/4    (l0,v3)    1/8   .....

Non-Zenoness

A timed automaton is non-zeno, if each finite run 
can be extended into a time-divergent run

l0
x < 13

n

i=0n→∞

l0
x < 13

l1
x>=12
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Reachability

Reachability
A state (l,v) is reachable if  (l0,v0)  (  d     ∪ σ )*  (l,v) 

A location l is reachable if there exist a v such that (l,v) is 
reachable.

Time additivity
Two successive delays can be combined

(l0,v0)   d0 (l1,v1)   d1 (l2,v2) iff (l0,v0)   d0+d1 (l2,v2) 

for d0, d1 ∈ RRRR≥≥≥≥0 .

Finite runs can be rewritten as alternating sequence of 

transitions and delays
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Timed Languages

Definitions
� A timed action is a pair (σ,t) with σ ∈ Σ , t ∈ RRRR≥≥≥≥0 

� A timed trace of timed automaton A is a finite or infinite 

sequence (σ1,t1) , (σ2,t2) , (σ3,t3) ,… with t0 ≤ t1 ≤ t2 ≤… s.t

there exist a run

(l0,v0)   d1    σ1   (l1,v1)   d2    σ2 (l2,v2)    d3    σ3    (l3,v3)    ….    

and ti+1 = ti  + di for i>0, and t0 = 0.

� The timed language of A is the set of all timed traces of A.

� The untimed language is the restriction of the timed language 

to Σ.
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Composition

� Asynchronous and distributed systems modelled by 
parallel composition of timed automata

� Timed automata (typically) closed under parallel 
composition

� Several competing definitions of parallel composition  

� Synchronization on common action labels [Alur]
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Composition

Composition of common labels [Alur]
� Set of locations (l1,l2) is the product of locations l1 ∈ Loc1, l2

∈Loc2

� Invariants in (l1,l2) are the conjunction of invariants in l1 and l2

� Edges must synchronize on shared labels, 

� guard is the conjunction of guards, 

� reset sets the union of reset sets

� Edges without shared labels may fire without synchornization

timer

l0 l1
x ≤ 12x:=0

on
x:=0

x ≥ 10

on

on

switch

k0 k1

y ≥ 1
on
y:=0

on

y:=0

timer||switch

(l0 ,k0) (l1 ,k1)
x ≤ 12

(l0 ,k1)

x:=0, y:=0
on

y ≥ 1
on

y:=0, x:=0
y ≥ 1
on
y:=0

x≥ 10, y ≥ 1
on
y:=0
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Composition

� Asynchronous and distributed systems modelled by 
parallel composition of timed automata

� Timed automata (typically) closed under parallel 
composition

� Several competing definitions of parallel composition  

� Synchronization on common action labels [Alur]

� Timed I/O automata [Lynch et al]

� Uppaal’s handshake synchronization

� Uppaal’s broadcast channels
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� Uppaal defines a network of timed automata

� Synchronization via channels

� Handshake synchronization on pairs of ! and ? label

� Both guards have to be satisfied

� If multiple pairs possible choose non-deterministically

AA

la

ka

ga

on!

B

lb

kb

gb

on?

AC

lc

kc

gc

on?

A || B || C

(la , lb , lc )

(ka , kb , lc ) (ka , lb , kc )

ga∧ gc

on! || on?
ga∧ gb

on! || on?

Handshake synchronization
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� Uppaal defines a network of timed automata

� Synchronization via channels

� Broadcast from ! channel to all ? channels

� Guards only on transition labelled !

� If multiple !-transitions enabled choose non-
deterministically 

AA

la

ka

ga

on!

B

lb

kb

on?

AC

lc

kc

on?

A || B || C

(la , lb , lc )

(ka , kb , kc )

ga

on! || on? || on?

Broadcast synchronization
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Composition

� Asynchronous and distributed systems modelled by 
parallel composition of timed automata

� Timed automata (typically) closed under parallel 
composition

� Several competing definitions of parallel composition  

� Synchronization on common action labels [Alur]

� Timed I/O automata [Lynch et al]

� Uppaal’s handshake synchronization

� Uppaal’s broadcast channels

� Many others 

� Synchronization via shared variables
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Outline

Today

� Real or continuous time vs discrete time models

� Syntax and semantics of timed automata
� Syntax of timed automata

� Invariants and guards

� Semantics of timed automata

� Executions and runs

� Reachability 

� Timed Languages

� Composition

� Example: Bi-phase mark protocol
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Example

Biphase Mark Protocol

� Convention for representing both a string of bits 

and clock edges in a square wave.

� Used, for instance, in:

� Intel 82530 Serial Communications Controller

� Ethernet

� Manchester encoding

� Optical communications

� Satellite telemetry applications

� Model based on work in [Vaandrager and de Groot]
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Example

Terminology

� Message encoded as square wave over as many cells as bits
� Cells are divided into mark subcell and code subcell
� Receiver should sample at the beginning of mark subcell, and somwhere

within  the code subcell
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Example

Assumptions

� Sender and receiver have each its own clocks

� Clocks with drift and jitter

� The signal takes some time after a change in voltage at 

stabilize. 

� Sampling within this period  many produce any value.

� The receiver may samples non-deterministically at some point 

during clock cycle.
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Example

A compositional model

clock

encoder wire

clock

sampler decoder

tick tock tock

edge

shared variable
channel

w new

put in get out
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Example

A compositional model

clock

encoder wire

clock

sampler decoder

tick tock tock

edge

shared variable
channel

w new

put in get out
tester
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Constants

Constants for a typical configuration

� length cell 32 clock cycles

� length mark subcell 16 clock cycles 

� sampling point 23 clock cycles

� min length clock cycle 81 time units

� max length clock cycle 100 time units

� max length unstable edge 81 time units

� max sample delay <81 time units

4 clocks (sender, receiver, wire, sampler)

5 channels (put,get,edge, tick, tock)
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Example

The digital clocks

clock

encoder wire

clock

sampler decoder

tick tock tock

edge

shared variable
channel

w new

put in get out
tester
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Example

The digital clocks

� Output event: tick! and tock! (broadcast)

� Local clocks x and y

� Jitter and drift modelled as non-deterministic timing

� Clocks tick (or tock) once between min and max time units

� Broadcast channels to synchronize with other compnents

x <= max

x >= min
tick!
x := 0 y <= max

y >=min
tock!
y := 0

clock of the encoder clock of decoder
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Example

The digital clocks

clock

encoder wire

clock

sampler decoder

tick tock tock

edge

shared variable
channel

w new

put in get out
tester
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Example

The encoder
� Input event: tick?, get?

� Output event: edge!

� Input variable: in

� Local variable: n

� No clock (!) guards on tick? 

� Time may not advance while in 
an urgent location

� Equivalent to a reset a clock x on 
entry and invariant x<=0 in 
location

� Reduction on the number of used 
clocks.

C4

C3

C2C1

C0

get?

in == 1
edge!

n < mark - 1
tick?

n := n+1

in == 0
edge!

n < cell - 1
tick?

n := n+1

n == cell - 1
tick?

n := 0 edge!

n == mark - 1
tick?

n := n+1

urgent 
location

integer guard 
on tick
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Example

The wire

� Input event: edge?

� Local variable: v (voltage)

� Output variable: w (output voltage)

� Local events: fuzz! and stable!

� Voltage changes upon input edge!

� Output voltage may change (fuzz) during edgelength time after 
edge!

W2

W1
z <= edgelength

W0

w := 1 - w
fuzz!

edge?
z := 0,
v := 1 - v

z == edgelength
w := v

settle!

edge?

location that should 
not be reachable if 
modelled correctly
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Example

The digital clocks

clock

encoder wire

clock

sampler decoder

tick tock tock

edge

shared variable
channel

w new

put in get out
tester
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Example

The sampler

� Input variable: w (voltage)

� Output variable: new

� Input event: tock?

� Local clock: s

� Local event: Sample!

� Samples variable w less than sampledelay time after tock?

� Point of sampling non-deterministically

s<sampledelay

Sample!
new := w

tock?
s:=0
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Example

The decoder
� Input variable: new

� Local variable: old, m

� Output variable: out

� Input event: tock?

� When change in new is 
detected, wait for sample.

� The output is 0 if sampled 
value equals old, 1 
otherwise.

� Copy new to old, wait for 
next edge 

D2

D1D0 new != old
tock?

old := new

put!
m := 0

m == sample - 1
tock?

out := (new != old),
m := m + 1,
old := new

m < sample - 1
tock?

m := m+1
new == old
tock?
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Example

The digital clocks

clock

encoder wire

clock

sampler decoder

tick tock tock

edge

shared variable
channel

w new

put in get out
tester
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Example

�The tester
� Input variable: out

� Local variable: buf

� Output variable: in

� Input event: put?

� Output event: get!

� Send non-deter-
minisically 0 or 1

� One place-buffer 
buf to send while 
waiting for 
feedback

T3T2T1

Error

T0 get!
in := 1

get!
buf := in,
in := 1

out != in
put?put?

get!
in := 0

out == in
put?

get!
buf := in,
in := 0

out == buf
put?

out != buf
put?

get!

location not  
reachable if 
modelled 
correctly

location not  
reachable if protocol 

is correct
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Model Checking

Main problems

The state space is infinite: S = { (l,v) | l ∈ Loc, v |= Inv(l), v: C→ RRRR≥≥≥≥0 }

The transition relation is infinite:  R ⊆ S x Σ ∪ RRRR≥≥≥≥0  x S

How to check automatically if an error
location is reachable?

AlurAlur and Dill have a solution to this problemand Dill have a solution to this problem


