
1

Comp4151 Ansgar Fehnker

Algorithmic Verification

Comp4151

Lecture 11-A

Ansgar Fehnker

Comp4151 Ansgar Fehnker

Overview

Model Checking Approaches

� Explicit State Model Checking

� Symbolic Model Checking

� Bounded Model Checking

� Automatic Abstraction Refinement

� Correctness of software, hardware and protocols

� Correctness for finite state systems

Comp4151 Ansgar Fehnker

Overview

Time critical systems

Correctness of embedded and distributed systems

� correctness depends result of a computation

� and on the timing of events, computations, responses

Time critical systems

� railway crossing

� process control

� consumer electronics

� automotive and avionics

�wireless

Comp4151 Ansgar Fehnker

Overview

Next two weeks

Model checking real-time systems

Themes
�Decidability
� Efficient implementations and data structures
� Application examples

Today
� Real or continuous time vs discrete time models
� Syntax and semantics of timed automata
� Example: Biphase Mark Protocol

2

Comp4151 Ansgar Fehnker

Discrete Time vs. Real Time

Discrete time

Finite model of time
� time ranges over the natural numbers

� events can only occur at integer times

� time advances by multiples of a smallest time step

� use a special tick event to synchronize

Comp4151 Ansgar Fehnker

Discrete Time vs. Real Time

Off Dimmed Bright
press? press?

press?

press?

Example

Intelligent light switch
� Press button twice quickly to switch to bright

� Press it once to switch to dimmed

� If light is on or dimmed, pressing button switches light off

Comp4151 Ansgar Fehnker

Discrete Time vs. Real Time

Off Dimmed Bright
press?

press?

press?

press?

discrete ticks

Dimmed’
tick?

tick? tick?

tick?

Example

Intelligent light switch
� Press button twice quickly to switch to bright

� Press it once to switch to dimmed

� If light is on or dimmed, pressing button switches light off

Comp4151 Ansgar Fehnker

Discrete Time vs. Real Time

Discrete time model
+ tick-event just a simple addition to finite state models

+ standard model checkers and temporal logic for verification

- delays are modelled explicitly

- synchronization either to strict or to loose

⇒suitable to model synchronous systems that evolve in lock-step

⇒inadequate for many asynchronous distributed systems.

Example: wireless networks
� local clocks with drift and jitter
� discrete time may introduce absent synchrony
� however, nodes do synchronize on time
� complete asynchronicity inadequate as well

3

Comp4151 Ansgar Fehnker

Discrete Time vs. Real Time

Real (or continuous) time

Infinite model of time
� time ranges over the positive reals

� events can take place at any point in (real) time

�multiple events can take place at the same point in time

� time may advance by any positive real amount

� no smallest time step

� timers and delays modelled using real valued variables
(clocks)

Comp4151 Ansgar Fehnker

Discrete Time vs. Real Time

Off Dimmed Bright
press? press?

press?

press?

Example

Intelligent light switch
� Press button twice quickly to switch to bright

� Press it once to switch to dimmed

� If light is on or dimmed, pressing button switches light off

Comp4151 Ansgar Fehnker

Discrete Time vs. Real Time

Off Dimmed Bright
press?

press?

press?

press?

x:=0

x>=1

x<=1

clock variable

Example

Intelligent light switch
� Press button twice quickly to switch to bright

� Press it once to switch to dimmed

� If light is on or dimmed, pressing button switches light off

Comp4151 Ansgar Fehnker

Discrete Time vs. Real Time

Continuous time model
+ clock-variables natural to model timers and delays

+ delay is modelled implicitly

- real-valued variables lead to infinite state system

- model checking algorithms become more complicated

⇒ suitable to model systems that synchronize on real time

⇒ too much good for completely discrete systems.

Example: Bi-Phase mark protocol
� protocol for sending bits as square wave
� local clocks for sender and receiver
� clock drift and non-deterministic delay
� to be discussed later in this lecture

4

Comp4151 Ansgar Fehnker

Real-Time vs Real-Time

The term real-time often refers to
� supervisory systems that update information at the same rate
as they receive data

� operating systems that employ reliable and predicable
scheduling to minimize the number of missed deadlines,
tardiness, …

� control systems that react to input within some small upper
limit on the response time

� simulators that ensure that simulation-time proceeds at the
same rate as the simulated time.

These use typically a discrete model of timeThese use typically a discrete model of time

≠≠≠≠≠≠≠≠
RealReal--time models with realtime models with real--valued clockvalued clock--variablesvariables

Comp4151 Ansgar Fehnker

Outline

Today

� Real or continuous time vs discrete time models

� Syntax and semantics of timed automata
� Syntax of timed automata

� Invariants and guards

� Semantics of timed automata

� Executions and runs

� Reachability

� Timed Languages

� Composition

� Example: Biphase Mark Protocol

Comp4151 Ansgar Fehnker

Introduction to Timed Automata

The basics

� A finite control graph with locations and edges

� Instantaneous transitions along edges,

� Delays while in location

l0 l1

Comp4151 Ansgar Fehnker

Introduction to Timed Automata

The basics

� Real-valued clocks, that increase at the same rate

� Constraints on clocks as guard on edges

� Clock resets to measure time between transitions

� Invariants in locations to enforce progress

� Labels for synchronization

l0 l1
x ≤ 12x:=0, y:=0

y≥1
on
x:=0
y:=0

x ≥ 10

on

on

guard

label

reset

invariant

5

Comp4151 Ansgar Fehnker

Syntax of Timed Automata

Definitions

Clocks

A clock is a variable ranging over the positive reals RRRR≥≥≥≥0

Constraints
Given a set of Clocks C let Ψ (C) be defined by

φ:= φ ∧ φ | ¬ φ | x ≤ n | x < n | x - y ≤ m | x – y < m

where x, y ∈ C, n ∈ N, N, N, N, m ∈ Z, Z, Z, Z,

• [AD94] defines TAs without
diagonal constraints

• TAs without diagonal constraints
are called diagonal-free

• Each TA with diagonal constraints
is bisimilar to diagonal-free TA

• Restriction to simple and
diagonal constraints to
ensure decidability

• Constraints of the form
x+y<n would make model
checking TAs undecidable

Comp4151 Ansgar Fehnker

Syntax of Timed Automata

Definitions

Clock valuations
A clock valuation v is a mapping C → RRRR≥≥≥≥0 .

Increment

For d ∈ RRRR≥≥≥≥0 valuation v+d maps clock x to v(x) + d.

Reset
Given r ⊆ C valuation v[r:=0] maps x to 0 if x ∈ r

and v(x) otherwise

Comp4151 Ansgar Fehnker

Syntax of Timed Automata

Definition

Timed Automata

Given a set C of clocks a timed automaton is a tuple

(Loc,l0,Σ,E,Inv),where

� Loc is a finite set of locations

� l0 is the initial location

� Σ is a set of labels

(to be continued)

Comp4151 Ansgar Fehnker

Syntax of Timed Automata

Definition

Timed Automata (cont)

� E ⊆ Loc x Ψ (C) x Σ x 2C x Loc a set of edges (l,g,σ,r,l’) with
� source location l

� guard g

� label σ (used for synchronization)

� reset set r

� target location l’

� Inv: Loc → Ψ (C) a mapping from locations to invariants

6

Comp4151 Ansgar Fehnker

Guards and Invariants

� Guards enable progress, invariants enforce progress

l0 l1
x ≤ 12x:=0,

10 ≤ x

on

on

l0 l1
x:=0,

10 ≤ x ≤ 12

on

on

x

time

12

10

time

12

10

X

Comp4151 Ansgar Fehnker

Guards and Invariants

� Guards enable progress, invariants enforce progress

� Invariants may lead to deadlocks

l0 l1
x ≤ 13x:=0,

10 ≤ x ≤ 12

on

on

l0 l1
x:=0,

10 ≤ x ≤ 12

on

on

x

time

12

10

time

12

10

?

Comp4151 Ansgar Fehnker

Guards and Invariants

� [AD90] used a Muller acceptance condition to ensure progress

� [Henzinger et al] introduced Timed Safety Automata with
invariants

l0 l1
x ≤ 12x:=0,

10 ≤ x

on

on

l0 l1
x:=0,

10 ≤ x ≤ 12

on

on

x

time

12

10

time

12

10

X

This became the standard
definition of TAs

No
deadlocks

May
deadlock

Comp4151 Ansgar Fehnker

Semantics

Definition

The operational semantics of a timed automaton

(Loc,l0,Σ,E,Inv) is given as a (timed) transition system

with

� set of states S = { (l,v) | l ∈ Loc, v |= Inv(l) }
� initial state s0 =(l0,0)

(to be continued)

7

Comp4151 Ansgar Fehnker

Semantics

Definition (cont)

� transition relation R ⊆ S x Σ ∪ RRRR≥≥≥≥0 x S that contains the
following

� discrete transitions (l,v) σ (l‘,v’)

if there exist (l,g,σ,r,l’)∈ E s.t. v|= g, and v[r:=0] = v’

� delay transitions (l,v) d (l,v +d)
for d ∈ RRRR≥≥≥≥0 if for all 0 ≤ d’ ≤ d holds v + d |= Inv(l)

Comp4151 Ansgar Fehnker

Runs and Executions

Run (or execution)

A finite or infinite sequence of transitions

(l0,v0) a0 (l1,v1) a1 (l2,v2) a2 (l3,v3) a3

with initial state (l0,v0) and ai ∈ Σ ∪ RRRR≥≥≥≥0

Dense time

Transitions may occur at any point in real time

(l0,v0) √2 (l1,v1) on (l2,v2) π (l3,v3) 42

Super dense time

Multiple transitions may occur at any point in real time

(l0,v0) on (l1,v1) 0 (l2,v2) on (l3,v3) on

Comp4151 Ansgar Fehnker

Zeno

Time divergent

An infinite run is time-divergent if it has an infinite
number of delays di such that

lim Σ di = ∞
Counterexample

(l0,v0) 12 (l0,v1) 1/2 (l0,v2) 1/4 (l0,v3) 1/8

Non-Zenoness

A timed automaton is non-zeno, if each finite run
can be extended into a time-divergent run

l0
x < 13

n

i=0n→∞

l0
x < 13

l1
x>=12

Comp4151 Ansgar Fehnker

Reachability

Reachability
A state (l,v) is reachable if (l0,v0) (d ∪ σ)* (l,v)

A location l is reachable if there exist a v such that (l,v) is
reachable.

Time additivity
Two successive delays can be combined

(l0,v0) d0 (l1,v1) d1 (l2,v2) iff (l0,v0) d0+d1 (l2,v2)

for d0, d1 ∈ RRRR≥≥≥≥0 .

Finite runs can be rewritten as alternating sequence of

transitions and delays

8

Comp4151 Ansgar Fehnker

Timed Languages

Definitions
� A timed action is a pair (σ,t) with σ ∈ Σ , t ∈ RRRR≥≥≥≥0

� A timed trace of timed automaton A is a finite or infinite

sequence (σ1,t1) , (σ2,t2) , (σ3,t3) ,… with t0 ≤ t1 ≤ t2 ≤… s.t

there exist a run

(l0,v0) d1 σ1 (l1,v1) d2 σ2 (l2,v2) d3 σ3 (l3,v3) ….

and ti+1 = ti + di for i>0, and t0 = 0.

� The timed language of A is the set of all timed traces of A.

� The untimed language is the restriction of the timed language

to Σ.

Comp4151 Ansgar Fehnker

Composition

� Asynchronous and distributed systems modelled by
parallel composition of timed automata

� Timed automata (typically) closed under parallel
composition

� Several competing definitions of parallel composition

� Synchronization on common action labels [Alur]

Comp4151 Ansgar Fehnker

Composition

Composition of common labels [Alur]
� Set of locations (l1,l2) is the product of locations l1 ∈ Loc1, l2

∈Loc2

� Invariants in (l1,l2) are the conjunction of invariants in l1 and l2

� Edges must synchronize on shared labels,

� guard is the conjunction of guards,

� reset sets the union of reset sets

� Edges without shared labels may fire without synchornization

timer

l0 l1
x ≤ 12x:=0

on
x:=0

x ≥ 10

on

on

switch

k0 k1

y ≥ 1
on
y:=0

on

y:=0

timer||switch

(l0 ,k0) (l1 ,k1)
x ≤ 12

(l0 ,k1)

x:=0, y:=0
on

y ≥ 1
on

y:=0, x:=0
y ≥ 1
on
y:=0

x≥ 10, y ≥ 1
on
y:=0

Comp4151 Ansgar Fehnker

Composition

� Asynchronous and distributed systems modelled by
parallel composition of timed automata

� Timed automata (typically) closed under parallel
composition

� Several competing definitions of parallel composition

� Synchronization on common action labels [Alur]

� Timed I/O automata [Lynch et al]

� Uppaal’s handshake synchronization

� Uppaal’s broadcast channels

9

Comp4151 Ansgar Fehnker

� Uppaal defines a network of timed automata

� Synchronization via channels

� Handshake synchronization on pairs of ! and ? label

� Both guards have to be satisfied

� If multiple pairs possible choose non-deterministically

AA

la

ka

ga

on!

B

lb

kb

gb

on?

AC

lc

kc

gc

on?

A || B || C

(la , lb , lc)

(ka , kb , lc) (ka , lb , kc)

ga∧ gc

on! || on?
ga∧ gb

on! || on?

Handshake synchronization

Comp4151 Ansgar Fehnker

� Uppaal defines a network of timed automata

� Synchronization via channels

� Broadcast from ! channel to all ? channels

� Guards only on transition labelled !

� If multiple !-transitions enabled choose non-
deterministically

AA

la

ka

ga

on!

B

lb

kb

on?

AC

lc

kc

on?

A || B || C

(la , lb , lc)

(ka , kb , kc)

ga

on! || on? || on?

Broadcast synchronization

Comp4151 Ansgar Fehnker

Composition

� Asynchronous and distributed systems modelled by
parallel composition of timed automata

� Timed automata (typically) closed under parallel
composition

� Several competing definitions of parallel composition

� Synchronization on common action labels [Alur]

� Timed I/O automata [Lynch et al]

� Uppaal’s handshake synchronization

� Uppaal’s broadcast channels

� Many others

� Synchronization via shared variables

Comp4151 Ansgar Fehnker

Outline

Today

� Real or continuous time vs discrete time models

� Syntax and semantics of timed automata
� Syntax of timed automata

� Invariants and guards

� Semantics of timed automata

� Executions and runs

� Reachability

� Timed Languages

� Composition

� Example: Bi-phase mark protocol

10

Comp4151 Ansgar Fehnker

Example

Biphase Mark Protocol

� Convention for representing both a string of bits

and clock edges in a square wave.

� Used, for instance, in:

� Intel 82530 Serial Communications Controller

� Ethernet

� Manchester encoding

� Optical communications

� Satellite telemetry applications

� Model based on work in [Vaandrager and de Groot]

Comp4151 Ansgar Fehnker

Example

Terminology

� Message encoded as square wave over as many cells as bits
� Cells are divided into mark subcell and code subcell
� Receiver should sample at the beginning of mark subcell, and somwhere

within the code subcell

Comp4151 Ansgar Fehnker

Example

Assumptions

� Sender and receiver have each its own clocks

� Clocks with drift and jitter

� The signal takes some time after a change in voltage at

stabilize.

� Sampling within this period many produce any value.

� The receiver may samples non-deterministically at some point

during clock cycle.

Comp4151 Ansgar Fehnker

Example

A compositional model

clock

encoder wire

clock

sampler decoder

tick tock tock

edge

shared variable
channel

w new

put in get out

11

Comp4151 Ansgar Fehnker

Example

A compositional model

clock

encoder wire

clock

sampler decoder

tick tock tock

edge

shared variable
channel

w new

put in get out
tester

Comp4151 Ansgar Fehnker

Constants

Constants for a typical configuration

� length cell 32 clock cycles

� length mark subcell 16 clock cycles

� sampling point 23 clock cycles

� min length clock cycle 81 time units

� max length clock cycle 100 time units

� max length unstable edge 81 time units

� max sample delay <81 time units

4 clocks (sender, receiver, wire, sampler)

5 channels (put,get,edge, tick, tock)

Comp4151 Ansgar Fehnker

Example

The digital clocks

clock

encoder wire

clock

sampler decoder

tick tock tock

edge

shared variable
channel

w new

put in get out
tester

Comp4151 Ansgar Fehnker

Example

The digital clocks

� Output event: tick! and tock! (broadcast)

� Local clocks x and y

� Jitter and drift modelled as non-deterministic timing

� Clocks tick (or tock) once between min and max time units

� Broadcast channels to synchronize with other compnents

x <= max

x >= min
tick!
x := 0 y <= max

y >=min
tock!
y := 0

clock of the encoder clock of decoder

12

Comp4151 Ansgar Fehnker

Example

The digital clocks

clock

encoder wire

clock

sampler decoder

tick tock tock

edge

shared variable
channel

w new

put in get out
tester

Comp4151 Ansgar Fehnker

Example

The encoder
� Input event: tick?, get?

� Output event: edge!

� Input variable: in

� Local variable: n

� No clock (!) guards on tick?

� Time may not advance while in
an urgent location

� Equivalent to a reset a clock x on
entry and invariant x<=0 in
location

� Reduction on the number of used
clocks.

C4

C3

C2C1

C0

get?

in == 1
edge!

n < mark - 1
tick?

n := n+1

in == 0
edge!

n < cell - 1
tick?

n := n+1

n == cell - 1
tick?

n := 0 edge!

n == mark - 1
tick?

n := n+1

urgent
location

integer guard
on tick

Comp4151 Ansgar Fehnker

Example

The wire

� Input event: edge?

� Local variable: v (voltage)

� Output variable: w (output voltage)

� Local events: fuzz! and stable!

� Voltage changes upon input edge!

� Output voltage may change (fuzz) during edgelength time after
edge!

W2

W1
z <= edgelength

W0

w := 1 - w
fuzz!

edge?
z := 0,
v := 1 - v

z == edgelength
w := v

settle!

edge?

location that should
not be reachable if
modelled correctly

Comp4151 Ansgar Fehnker

Example

The digital clocks

clock

encoder wire

clock

sampler decoder

tick tock tock

edge

shared variable
channel

w new

put in get out
tester

13

Comp4151 Ansgar Fehnker

Example

The sampler

� Input variable: w (voltage)

� Output variable: new

� Input event: tock?

� Local clock: s

� Local event: Sample!

� Samples variable w less than sampledelay time after tock?

� Point of sampling non-deterministically

s<sampledelay

Sample!
new := w

tock?
s:=0

Comp4151 Ansgar Fehnker

Example

The decoder
� Input variable: new

� Local variable: old, m

� Output variable: out

� Input event: tock?

� When change in new is
detected, wait for sample.

� The output is 0 if sampled
value equals old, 1
otherwise.

� Copy new to old, wait for
next edge

D2

D1D0 new != old
tock?

old := new

put!
m := 0

m == sample - 1
tock?

out := (new != old),
m := m + 1,
old := new

m < sample - 1
tock?

m := m+1
new == old
tock?

Comp4151 Ansgar Fehnker

Example

The digital clocks

clock

encoder wire

clock

sampler decoder

tick tock tock

edge

shared variable
channel

w new

put in get out
tester

Comp4151 Ansgar Fehnker

Example

�The tester
� Input variable: out

� Local variable: buf

� Output variable: in

� Input event: put?

� Output event: get!

� Send non-deter-
minisically 0 or 1

� One place-buffer
buf to send while
waiting for
feedback

T3T2T1

Error

T0 get!
in := 1

get!
buf := in,
in := 1

out != in
put?put?

get!
in := 0

out == in
put?

get!
buf := in,
in := 0

out == buf
put?

out != buf
put?

get!

location not
reachable if
modelled
correctly

location not
reachable if protocol

is correct

14

Comp4151 Ansgar Fehnker

Model Checking

Main problems

The state space is infinite: S = { (l,v) | l ∈ Loc, v |= Inv(l), v: C→ RRRR≥≥≥≥0 }

The transition relation is infinite: R ⊆ S x Σ ∪ RRRR≥≥≥≥0 x S

How to check automatically if an error
location is reachable?

AlurAlur and Dill have a solution to this problemand Dill have a solution to this problem

