
1

Session 1 2006 Ralf Huuck 1

Automata Theory 101

Ralf Huuck

Session 1 2006 Ralf Huuck 2

Outline

• Introduction
• Finite Automata
• Regular Expressions

• ω-Automata

Session 1 2006 Ralf Huuck 3

Acknowledgement

Some slides are based on Wolfgang Thomas’
excellent lecture on “Automatentheorie and

Formale Sprachen”.

Session 1 2006 Ralf Huuck 4

Introduction

2

Session 1 2006 Ralf Huuck 5

Basics

Basic objects in mathematics
• number (number theory, analysis)
• shapes (geometry)
• sets and transformation on such objects

Basic objects in computer science
• words
• stet of words (language)

and their transformations
• defining and describing words

Session 1 2006 Ralf Huuck 6

Why words?

• Every IT system is about data and transformation of data

10101010100000101010111110
word from alphabet {0,1}

• program is also just a finite word
• every terminating execution is a finite word
• a programming language is the set of all permissible words

(i.e., accepted programs)

Automata and Grammars are all about accepting/generating
words and defining a language.

Session 1 2006 Ralf Huuck 7

Automaton

so s1

a

b

b

a

defines language of
all words over alphabet {a,b} with an odd number of b’s.

final/accepting
state

Session 1 2006 Ralf Huuck 8

Finite Automata

3

Session 1 2006 Ralf Huuck 9

Words & Languages

An alphabet is a non-empty set of symbols/letters.

Σb = {0,1} Σlat = {a,…z,A,…,Z}

A word is a sequence of symbols from an alphabet

01111010 ∈ Σ*
b hello ∈ Σ*

lat

A language is the set of all possible words

Σ*
b (all finite Boolean words) Σ*

lat (all finite words of latin characters)

A grammar/automaton restricts to meaningful languages

all 8-bit words all English words

Session 1 2006 Ralf Huuck 10

Operations on Words

Concatenation of words: u=a1…am and v=b1…bn (m,n≥0)

u · v = a1…amb1…bn

Note: empty word ε, word of length 0, but not ∅

u · ε = u= ε · u

We often write uv instead of u · v.

Session 1 2006 Ralf Huuck 11

Operations on Languages

Concatenation of languages K and L:

K · L = {uv ∈ Σ* | u∈ K, v∈ L}

Example: K={follow, me} L={follow, you}
K · L= {followfollow, meyou, followyou}

Session 1 2006 Ralf Huuck 12

Kleene Star

Iterating a language L

L0={ε}
L1=L
L2=L·L
Ln+1=Ln·L

Kleene star: L*=Un≥ 0 Ln

Example: {a,b}* = {ε,a,b,aa,bb,ab,ba, aab, …}
all finite sequences over {a,b}.

4

Session 1 2006 Ralf Huuck 13

Deterministic vs Non-Deterministic

Deterministic Finite Automaton
(DFA)

from every state every symbol leads
to a unique state

To model algorithms.

Non-deterministic Finite Automaton
(NFA)

from a state the same symbol might
lead t o different states or no
state

To model a systems or environment.

s0 s1

a

b

b

a

s0 s1

a, b

b

b

b

Session 1 2006 Ralf Huuck 14

Definition DFA

A DFA is of the form

A=(S,Σ,s0,δ,F)

where
• S finite set of states
• Σ alphabet
• s0 initial state
• δ : S×Σ → S transition function
• F⊆ S set of final states

s0 s1

b

b

a

Session 1 2006 Ralf Huuck 15

Accepting Run of DFA

A run over a word w=a0,…,an (n≥0) of an DFA

is a sequence of states
q0,…, qn+1

such that
• q0 = s0 and
• δ (qi,ai)=qi+1 (0· i · n)

We also write δ (q0,w)=qn+1.

A run is accepting iff qn+1 ∈ F.

s0 s1

b

b

a
a

Session 1 2006 Ralf Huuck 16

Language of DFA

The language accepted by DAF A is

L(A) = {w∈ Σ* | δ (s0,w)∈F }

A language K is called DFA accepting
if there is a DFA such that L(A)=K.

Two DFAs A and B are equivalent of L(A)=L(B).

5

Session 1 2006 Ralf Huuck 17

Definition NFA

A NFA is of the form

A=(S,Σ,s0,Δ,F)

where
• S finite set of states
• Σ alphabet
• s0 initial state
• Δ :S×Σ×S transition relation
• F⊆ S set of final states

s0 s1

a, b

b

b

b

no longer
function

Session 1 2006 Ralf Huuck 18

Accepting Run of NFA

A run over a word w=a0,…,an (n≥0) of an NFA

is a sequence of states
q0,…, qn+1

such that
• q0 = s0 and
• (qi,ai,qi+1)∈ Δ (0· i · n)

We also write q0→
w qn+1.

A run is accepting iff qn+1 ∈ F.

s0 s1

a, b

b

b

b

Session 1 2006 Ralf Huuck 19

Language of NFA

The language accepted by NFA A is

L(A) = {w∈ Σ* | s0→
w s and s∈F }

A language K is called NFA accepting
if there is a NFA such that L(A)=K.

Two NFAs A and B are equivalent of L(A)=L(B).

Session 1 2006 Ralf Huuck 20

Question

Is there a language that is
either a DFA or an NFA accepting,

but not both?

6

Session 1 2006 Ralf Huuck 21

Answer: No

Claim: L DFA accepting ⇔ L NFA accepting

Proof:
L DFA accepting ⇒ L NFA accepting

easy: every DFA is in particular an NFA,
just relax δ to be a relation

L NFA accepting ⇒ L DFA accepting

slightly harder, idea see next slide

Session 1 2006 Ralf Huuck 22

Idea: NFA to DFA

s0 s1

a, b

b

b

b

{s0}

{s0,
s1}

a

{}

{s1}

b

a, b

aa

b

b

DFANFA

Power set construction

• state space power set
• keep initial state
• for every symbol and state have a
transition to the exact reachable subset

• all states which contain a final state are final states

Session 1 2006 Ralf Huuck 23

Definition Power Set Automaton

Given NFA A=(S,Σ,s0,Δ,F).

Define power set DFA A’=(S’,Σ,s0’,δ,F’) as follows:

• S’ := 2S

• s0’ := {so}
• δ (P,a) ={q∈ S | there is p∈ P : (p,a,q)∈ Δ}
• F’ := {P⊆ S | P ∩ F ≠ ∅}

Session 1 2006 Ralf Huuck 24

Proof NFA ⇒ DFA

Lemma: We show A and A’ are equivalent by showing
A: s0 →

w s iff s∈ δ({s0},w)
Proof: A: s0 →

w s
iff s∈ ReachA(w)

iff s∈ δ({s0},w).

This implies:
A: s0 →

w s with s∈ F

iff s∈ δ({s0},w) ∩ F ≠ ∅
Hence: A is w accepting iff A’ is w accepting.

reachable
states for w

7

Session 1 2006 Ralf Huuck 25

Regular Expression

Session 1 2006 Ralf Huuck 26

Another Way of Defining a Language

Example
• all words starting with 1 or 3 a’s
• followed by a possible sequence of ab’s
• followed by at least 1 b

Regular Expression
(a + aaa) · (a · b)* · b · b*

Brackets and concatenation symbols are sometimes omitted when clear from the context.

Session 1 2006 Ralf Huuck 27

RE Syntax

Definition: The set of regular expressions REΣ over Σ =
{a1,…,an} is defined inductively by:

Base elements: ∅, ε, a1,…,an

Constructors: if r and s are regular expression so are
(r+s), (r · s), and r*

Alternatively this can be defined in terms of a BNF grammar.

Session 1 2006 Ralf Huuck 28

RE Semantics

We define a language L(r)⊆ Σ* (set of words) for every regular
expression r∈ REΣ as follows:

L : REΣ → 2Σ is defined inductively:

1. L(∅)=∅, L(ε)={ε}, L(ai)={ai}
2. L(r+s) = L(r) + L(s)

L(r · s) = L(r) · L(s)
L(r*) =(L(r))*

A language is regular if it is definable by a regular expression.

8

Session 1 2006 Ralf Huuck 29

Regular Expressions in UNIX

• [a1, a2, …, an] instead of a1 + a2 + … + an

• “.” instead of Σ (any letter)
• | instead of +

• r? instead of ε + r
• r+ instead of r*r
• r{4} instead of rrrr

Session 1 2006 Ralf Huuck 30

Question

Is there a language that can be expressed
either by an NFA/DFA or an RE

but not both?

Session 1 2006 Ralf Huuck 31

Answer

Kleene’s Theorem
who also braught us the Kleene algebra, the Kleene star,
Kleene's recursion theorem and the Kleene fixpoint theorem

For every RE there is an equivalent NFA and
for every NFA there is an equivalent RE.

We give the proof (sketch) by
a) presenting an inductive construction from RE to NFA and
b) the idea of a transformation algorithm from NFA to RE

Session 1 2006 Ralf Huuck 32

Induction Base

case r=∅: define Ar as

case r=ε: define Ar as

case r=a (a∈ Σ): define Ar as

RE to NFA: Thompson Construction

s0 s1

s0 s1

s0 s1

ε

a

9

Session 1 2006 Ralf Huuck 33

Induction Step

case r+s:
define Ar + As as

case r · s:
define Ar · A

s
as

case r*:
define Ar

*as

RE to NFA: Thompson Construction

Ar

As

ε

ε

ε

ε

Ar As
ε

Ar

ε

ε ε

ε

Session 1 2006 Ralf Huuck 34

Idea: NFA to RE

Claim: For every NFA we can construct an equivalent RE.
Proof (idea): Create RE from transition labels of NFA.

There is a graph transformation algorithm that does exactly
this. It is know as the elimination algorithm.

Session 1 2006 Ralf Huuck 35

Start

transform

to

Example

a

b

a
a

a

b

b+aa a

b

a

a+ (b+aa) b* a

Session 1 2006 Ralf Huuck 36

Closure Properties, Product Automaton

If K,L∈ Σ* regular then K∩ L, K∪ L and Kcomp := Σ* \ K regular.

E.g.:K∩L can be obtained by synchronous product automaton
A× : For NFA Ak=(Sk,Σ,s0k,Δk,Fk) for K and
AL=(SL,Σ,s0L,ΔL

,FL) for L we define:

A× := (Sk× SL,Σ,(s0k,s0L),Δ,F) where
• ((sk,sl),a,(s’k,s’l)) ∈ Δ iff (sk,a,s’k)∈ Δk and (sL,a,s’L)∈ ΔL

• F := Fk × FL

Idea: Run Ak, AL in parallel and only accept if both accept.

10

Session 1 2006 Ralf Huuck 37

Example

Session 1 2006 Ralf Huuck 38

Synchronized Product

A synchronized product on NFAs
A1=(S1,Σ0∪Σ1,s01,Δ1,F1), A2=(S2,Σ0∪Σ2,s02,Δ

2
,F2)

with disjoint Σ0, Σ1, Σ2 is defined by:

Async:= (S1× S2,Σ,(s01,s02),Δ,F) where
• ((s1,s2),a,(s’1,s’2))∈ Δ iff

– a∈Σ1, (s1,a,s’1)∈Δ1, s2=s’2 or
– a∈Σ2, (s2,a,s’2)∈Δ2, s1=s’1 or
– a∈Σ0, (s1,a,s’1)∈Δ1 and (s2,a,s’2)∈Δ2

• F := F1 × F2

Means: A1, A2 can move independently on Σ1, Σ2, but must synchronize on Σ0

Session 1 2006 Ralf Huuck 39

Example

Session 1 2006 Ralf Huuck 40

Good To Knows

For any NFAs A,B:

• emptiness problem: L(A)=∅?

• infinity problem: Is |L(A)| infinite?
• inclusion problem: L(A)⊆ L(B)?

• equivalence problem: L(A)=L(B)?

are all decidable.

11

Session 1 2006 Ralf Huuck 41

Model Checking as Inclusion Problem

Model Checking Problem:

M ² φ ?

Special case:

Solving by: Transform RE B in NFA and check if L(A)⊆ L(B)

which is checking: L(A)∩(Σ*\ L(B))=∅

System satisfies property ?

NFA A satisfies RE B

Session 1 2006 Ralf Huuck 42

Model Checking as Inclusion Problem

Model Checking Problem:

M ² φ ?

Typical: Model checking is not only concerned about finite
runs but also infinite, e.g., for non-terminating processes.

This requires more powerful frameworks:

ω−Automata instead of NFAs, temporal logic instead of RE.

System satisfies property ?

Session 1 2006 Ralf Huuck 43

Something to Remember

Programmer
• Regular expressions powerful for pattern matching
• Implement regular expressions with finite state machines.
• example: lexer

Theoretician
• Regular expression is a compact description of a set
• DFA is an abstract machine that solves pattern match
• equivalence DFA/NFA and regular expressions
• model checking as inclusion problem

Session 1 2006 Ralf Huuck 44

ω − Automata

12

Session 1 2006 Ralf Huuck 45

From Finite to Infinite Systems

So far:
• DFA/NFA and regular expressions define finite systems
• terminating programs, algorithms etc.

Now:
• infinite systems, i.e., systems with infinite runs
• non-terminating programs, operating systems, etc.

Infinite words are called ω words and the automata generating
them ω automata.

Session 1 2006 Ralf Huuck 46

Buchi Automata

A (non-deterministic) Buchi automaton 〈Σ, S, s0, Δ,F〉
– Σ is a finite alphabet
– S is a finite set of states
– s0 ∈ Q is a subset of initial states
– Δ: Q×Σ ×Q is a transition relation
– F ⊆ S is a subset of accepting states

For an infinite run r let Inf(r) = { s | s=si for infinitely many i }.

A run r of a Buchi automaton is accepting iff Inf(r)∩ F≠ ∅,
i.e., some final state occurs infinitely often.

Session 1 2006 Ralf Huuck 47

Example

s0 s1 s2

r1=s0s1s2s2s2s2…

r2=s0s1s2s1s2s1…

r3=s0s1s2s1s1s1…

ACCEPTED

ACCEPTED

REJECTED

a

b

b

c

a

Session 1 2006 Ralf Huuck 48

ω−regular Languages

An ω word has a finite prefix from s0 to s and then revisits s
infinitely often.

For automaton A, if Us is the regular set of all finite words s0 to
s and Vs the regular set of all finite “revisits”. An ω word is

α=uv0v1… where u∈ Us, vi∈ Vs, i≥ 0
We write α∈ UsVω

s.

The ω regular language of A is Lω(A)=Us∈ F UsVω
s .

A language is ω regular iff Buchi recognizable.

13

Session 1 2006 Ralf Huuck 49

Other ω−Automata

There are different types of ω-automata. They typically only
differ in their acceptance conditions.

Buchi: Inf(r)∩F ≠ ∅,

Muller: ∨F∈ F Inf(r)=F for F⊆ 2S (must match one set)

Rabin: ∨n
i=1 (Inf(r)∩Ei=∅ and Inf(r)∩Fi ≠ ∅) for Ei,Fi⊆ S and

acceptance set {(E1,F1),…,(En,Fn)}, i.e., all states of Ei only
visited finitely often, but some states of Fi infinitely

Street: ∧ n
i=1 (Inf(r)∩Ei≠∅ and Inf(r)∩Fi= ∅) for Ei,Fi⊆ S and

acceptance set {(E1,F1),…,(En,Fn)} (dual to Rabin)

Session 1 2006 Ralf Huuck 50

Equivalence

For non-deterministic ω-automata the following are equivalent
(recognize the same language):

Buchi
⇔ Muller
⇔ Rabin
⇔ Street

Session 1 2006 Ralf Huuck 51

McNaughton’s Theorem

McNaughton’s Theorem:
Buchi can be transformed into equivalent deterministic Muller.

From its proof (Safra’s construction) follows:

deterministic Muller,
⇔ deterministic Rabin,
⇔ deterministic Street and
⇔ non-deterministic Buchi

Session 1 2006 Ralf Huuck 52

Conclusion

non-deterministic Buchi
⇔ Muller (deterministic/non-deterministic)
⇔ Street (deterministic/non-deterministic)
⇔ Rabin (deterministic/non-deterministic)

14

Session 1 2006 Ralf Huuck 53

Product of Buchi Automata

a

a

a

a
L(A1)={aω}

r1 r2 s1 s2

A1 A2

L(A2)={aω}

The product using the same construction as for NFAs:

(r1,s1)

A1×A2

(r2,s1)

(r1,s2) (r2,s2)

Does not work! As obviously

L(A1× A2)= L(A1)=L(A1)= {aω}

Session 1 2006 Ralf Huuck 54

Product of Buchi Automata

a

a

a

a
L(A1)={aω}

r1 r2 s1 s2

A1 A2

L(A2)={aω}

The product

(r1,s1)

A1×A2

(r2,s1)

(r1,s2) (r2,s2)

(r1,s1) (r2,s1)

(r1,s2) (r2,s2)

(r1,s1) (r2,s1)(r1,s1)

(r1,s2) (r2,s2)

Copy 0 Copy 1 Copy 2

a

a a

a

a
a

Session 1 2006 Ralf Huuck 55

Product of Buchi Automata

a

a

a

a
L(A1)={aω}

r1 r2 s1 s2

A1 A2

L(A2)={aω}

The product

(r1,s1)

A1×A2

(r2,s1)

(r1,s2) (r2,s2)

(r1,s1) (r2,s1)

(r1,s2) (r2,s2)

(r1,s1) (r2,s1)(r1,s1)

(r1,s2) (r2,s2)

Copy 0 Copy 1 Copy 2

a

a

a

aaa

Session 1 2006 Ralf Huuck 56

Product of Buchi Automata

a

a

a

a
L(A1)={aω}

r1 r2 s1 s2

A1 A2

L(A2)={aω}

The product

(r1,s1)

A1×A2

(r2,s2)

(r1,s1)

(r2,s2)

aa

a
a

15

Session 1 2006 Ralf Huuck 57

Product of Buchi Automata

Strategy
• “multiply” the product automaton by 3

(S = S1 × S2 × {0,1,2})

• ‘0’ copy initial states, ‘2’ copy final states
• transition relation like “normal” product automaton, but

redirect arcs such that
– transition to the ‘1’ copy if in ‘0’ copy and visiting final state from A1

– transition to the ‘2’ copy if in ‘1’ copy and visiting final state from A2,
– all transitions from ‘2’ copy lead to ‘0’ copy

The product of A1, A2 gives us the intersection of their two languages.

Session 1 2006 Ralf Huuck 58

Lessons Learned

• DFA vs NFA
• regular vs DFA/NFA
• product of NFAs (intersection of languages)

• ω automata
• product of ω automata

Session 1 2006 Ralf Huuck 59

Next Lecture

Model Checking Problem:

M ² φ ?

Have a nice language to specify φ: use temporal logic.

System satisfies property ?

