

| The imagination driving Australia's ICT future, |
| :--- | :--- |
| Outline |
| - Introduction |
| - Finite Automata |
| - Regular Expressions |
| - $\quad \omega$-Automata |
| sationat |

| The imagination driving Australia's ICT future. |
| :--- | :--- |
| Acknowledgement |
| Some slides are based on Wolfgang Thomas'
 excellent lecture on "Automatentheorie and
 Formale Sprachen". |

| The imagination driving Australiás ICT future. |
| :--- | :--- |
| Introduction |
| narionai |

The imagination driving Australia's ICT future,	- -
Basics	
Basic objects in mathematics - number (number theory, analysis) - shapes (geometry) - sets and transformation on such objects Basic objects in computer science - words - stet of words (language) and their transformations - defining and describing words	fun excellent good freat interesting exciting
Rat tuck	

The imagination driving Australa's ICT future.
Why words?
- Every IT system is about data and transformation of data
10101010100000101010111110
word from alphabet $\{0,1\}$
- program is also just a finite word
- every terminating execution is a finite word
- a programming language is the set of all permissible words
(i.e., accepted programs)
Automata and Grammars are all about accepting/generating
words and defining a language.
sman mane

The imagination driving Australia's ICT Tuture.	- national
Operations on Words	
Concatenation of words: $u=a_{1} \ldots a_{m}$ and $v=b_{1} \ldots b_{n}(m, n \geq 0)$	
Note: empty word ε, word of length 0 , but not \emptyset	
$\mathrm{u} \cdot \varepsilon=\mathrm{u}=\varepsilon \cdot \mathrm{u}$	
We often write uv instead of $\mathbf{u} \cdot \mathbf{v}$.	
Raat tuck	${ }^{10}$

The imagination driving Australia's ICT future.	
Kleene Star	
Iterating a language L $\begin{aligned} & \mathrm{L}^{0}=\{\varepsilon\} \\ & \mathrm{L}^{1}=\mathrm{L} \\ & \mathrm{~L}^{2}=\mathrm{L} \cdot \mathrm{~L} \\ & \mathrm{~L}^{\mathrm{n}+1}=\mathrm{L}^{\mathrm{n}} \cdot \mathrm{~L} \end{aligned}$	
Kleene star: $L^{*}=\bigcup_{n \geq 0} L^{n}$ Example: $\{a, b\}^{*}=\{\varepsilon, a, b, a a, b b, a b, b a, a a b, \ldots\}$ all finite sequences over $\{a, b\}$.	
	${ }^{12}$

The imagination diving Australiás ict future.
Answer: No
Claim: L DFA accepting \Leftrightarrow L NFA accepting
Proof:
L DFA accepting \Rightarrow L NFA accepting
\quad easy: every DFA is in particular an NFA,
\quad just relax δ to be a relation
L NFA accepting \Rightarrow L DFA accepting
slightly harder, idea see next slide
nationat
Idea: NFA to DFA

	- - antional
Definition Power Set Automaton	
Given NFA A $=\left(\mathrm{S}, \Sigma, \mathrm{S}_{0}, \Delta, \mathrm{~F}\right)$. Define power set DFA A' $=\left(\mathrm{S}^{\prime}, \Sigma, \mathrm{s}_{0}{ }^{\prime}, \delta, \mathrm{F}^{\prime}\right)$ as follows: - $S^{\prime}:=2^{S}$ - $\mathrm{s}_{0}{ }^{\prime}:=\left\{\mathrm{s}_{0}\right\}$ - $\delta(P, a)=\{q \in S \mid$ there is $p \in P:(p, a, q) \in \Delta\}$ - $F^{\prime}:=\{P \subseteq S \mid P \cap F \neq \emptyset\}$	
-mines	

The imagination driving Australia's ICT future.	- national
Regular Expressions in UNIX	
- $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ instead of $a_{1}+a_{2}+\ldots+a_{n}$ - "." instead of Σ (any letter) - \| instead of + - r ? instead of $\varepsilon+r$ - $r+$ instead of $r^{*} r$ - $r\{4\}$ instead of rrrr	

| The imagination diving Australia's ICT future. |
| :--- | :--- |
| Question |
| Is there a language that can be expressed |
| either by an NFA/DFA or an RE |
| but not both? |

The imagination driving Australie's ICT future.
Answer
Kleene's Theorem
who also braugh us the Kleene alsebra, the Kleene star,
Kleene's recursion theorem and the kleene fixpoint theorem
For every RE there is an equivalent NFA and
for every NFA there is an equivalent RE.
We give the proof (sketch) by
a) presenting an inductive construction from RE to NFA and
b) the idea of a transformation algorithm from NFA to RE

The imagination driving Australia's ICT future.
Idea: NFA to RE
Claim: For every NFA we can construct an equivalent RE. Proof (idea): Create RE from transition labels of NFA. There is a graph transformation algorithm that does exactly this. It is know as the elimination algorithm.

The imagination driving Australia's ICT future.	
Synchronized Product	
$A_{\text {sync }}:=\left(\mathrm{S}_{1} \times \mathrm{S}_{2}, \Sigma,\left(\mathrm{~S}_{01}, \mathrm{~S}_{02}\right), \Delta, \mathrm{F}\right)$ where - $\left(\left(\mathrm{s}_{1}, \mathrm{~s}_{2}\right), \mathrm{a},\left(\mathrm{s}^{\prime}{ }_{1}, \mathrm{~s}^{\prime}{ }_{2}\right)\right) \in \Delta$ iff - $\mathrm{a} \in \Sigma_{1},\left(\mathrm{~s}_{1}, \mathrm{a}, \mathrm{s}^{\prime}{ }_{1}\right) \in \Delta_{1}, \mathrm{~s}_{2}=\mathrm{s}^{\prime}{ }_{2}$ or - $a \in \Sigma_{2},\left(s_{2}, a, s_{2}^{\prime}\right) \in \Delta_{2}, s_{1}=s_{1}^{\prime}$ or - $a \in \Sigma_{0},\left(s_{1}, a, s^{\prime}{ }_{1}\right) \in \Delta_{1}$ and $\left(s_{2}, a, s_{2}^{\prime}\right) \in \Delta_{2}$ - $F:=F_{1} \times F_{2}$ Means: A_{1}, A_{2} can move independently on Σ_{1}, Σ_{2}, but must synchronize on Σ_{0}	
Sesson 12006 ${ }^{\text {20] }}$	

The imgination diving Australes's ICT Tuture.	- ${ }^{\text {narional }}$	
Good To Knows		
For any NFAs A,B: - emptiness problem: $L(A)=\emptyset$? - infinity problem: Is \|L(A)	infinite? - inclusion problem: $L(A) \subseteq L(B)$? - equivalence problem: $\mathrm{L}(\mathrm{A})=\mathrm{L}(\mathrm{B})$? are all decidable.	

The imagination driving Australia's ICT future,
Something to Remember
Programmer - Regular expressions powerful for pattern matching - Implement regular expressions with finite state machines. - example: lexer Theoretician - Regular expression is a compact description of a set - DFA is an abstract machine that solves pattern match - equivalence DFA/NFA and regular expressions - model checking as inclusion problem

Example

The imagination driving Australia's ICT future.	Homal
McNaughton's Theorem	
McNaughton's Theorem: Buchi can be transformed into e From its proof (Safra's construct	tic Muller.
esson $12008{ }^{\text {and }}$	

The imagination driving Australia's ICT future.

- | national |
| :---: |
| net Avtramua |

Conclusion
non-deterministic Buchi
\Leftrightarrow Muller (deterministic/non-deterministic)
\Leftrightarrow Street (deterministic/non-deterministic)
\Leftrightarrow Rabin (deterministic/non-deterministic)

The imagination driving Australia's ict future,
Product of Buchi Automata
Strategy - "multiply" the product automaton by 3 $\left(S=S_{1} \times S_{2} \times\{0,1,2\}\right)$ - '0' copy initial states, ' 2 ' copy final states - transition relation like "normal" product automaton, but redirect arcs such that - transition to the ' 1 ' copy if in ' 0 ' copy and visiting final state from A_{1} - transition to the ' 2 ' copy if in ' 1 ' copy and visiting final state from A_{2}, - all transitions from ' 2 ' copy lead to ' 0 ' copy
The product of A_{1}, A_{2} gives us the intersection of their two languages.
(enter

The imagination driving Australia's ICT future.
Lessons Learned
- DFA vs NFA
- regular vs DFA/NFA
- product of NFAs (intersection of languages)
- ω automata
- product of ω automata
nationat
ncturnaia

