
1

Ralf Huuck COMP 4152 1

Introduction to SPIN

Ralf Huuck

Ralf Huuck COMP 4152 2

Acknowledgments

Parts of the slides are based on an
earlier lecture by Radu Iosif, Verimag.

Ralf Huuck COMP 4152 3

PROMELA (PROcess MEta LAnguage) is:
– a language to describe concurrent (distributed) systems:

• network protocols, telephone systems
• multi-threaded (-process) programs

– similar with some structured languages (e.g. C, Pascal)

SPIN (Simple Promela INterpreter) is a tool for:
– detecting logical errors in the design of systems e.g:

• deadlocks
• assertions (e.g. race conditions)
• temporal logic formulas

PROMELA/SPIN

Ralf Huuck COMP 4152 4

Given a PROMELA model (program), SPIN can do:

– a random simulation i.e. it interprets the program
• this mode cannot be used in exhaustive verification
• useful for viewing error traces

– an exhaustive analysis
• considers all possible executions of the program
• finds all potential errors, both deadlock and user-specified

Deadlock:
– situation in which at least one process remains blocked forever

while waiting for an inexistent event to happen

User specified constraints:
– assertions
– temporal (never) claims

Features

2

Ralf Huuck COMP 4152 5

PROMELA “Hello World”

The simplest erroneous specification

init {

0;

}

init {

printf(“Hello World\n”);

}

Example

Ralf Huuck COMP 4152 6

init {
printf(“Hello World\n”);
}

SPIN

0: proc - (:root:) creates proc 0 (:init:)

Hello World

1: proc 0 (:init:) line 3 "pan_in" (state
1) [printf(‘Hello World\\n')]

simulation trace

C:\> spin –p hello.prom

SPIN Simulation

Ralf Huuck COMP 4152 7

init {
0;
} SPIN C:\> spin –a dlock.prom

pan.t pan.m pan.b pan.h pan.c

GCC

pan.exe

SPIN Analysis (1)

Ralf Huuck COMP 4152 8

pan.exe dlock.prom.trail

SPIN C:\> spin –p -t dlock.prom

#processes: 1
-4: proc 0 (:init:) line 3 "pan_in" (state 1)
1 processes created

error trace

OK

ERROR

SPIN Analysis (2)

3

Ralf Huuck COMP 4152 9

The PROMELA language

Ralf Huuck COMP 4152 10

• all C pre-processor directives can be used

• definitions of types, variables, processes

• if,do,break,goto control flow constructs

Similar to C

#define NAME 5

Ralf Huuck COMP 4152 11

Basic Types and Ranges

At most one enumeration type

-2^31 – 1 .. 2^31 - 1int

- 2^15 - 1 .. 2^15 - 1short

0..255byte

0..1bit, bool

Warning: type ranges are OS-dependent
(just like in C)

mtype = {one, two, three};

Ralf Huuck COMP 4152 12

Recode Types (user defined)

• look like C structures

typedef S {

short a, b;

byte x;

};

4

Ralf Huuck COMP 4152 13

Variables (same C syntax)

int x, y;

int z = 0;

mtype m = one;

Variables

Ralf Huuck COMP 4152 14

Procedures

there are no procedures, only processes

• the init process (like main in C)
– has no parameters

• can be activated by

or automatically

proctype foo(int x, y; bit b){...}

run foo(254, 255,0);

active proctype foo(int x, y; bit b){...}

Ralf Huuck COMP 4152 15

Scoping

– variables are global if declared outside any
process

– variables are local a process if declared within its
proctype declaration

– local variables shadow globals with the same
name

Ralf Huuck COMP 4152 16

– arrays declared like variables:

– indexes are zero-based
– scoping rules apply (there might be global and local vectors)

int vector[32];

Arrays and Constants

5

Ralf Huuck COMP 4152 17

Example

#define length 64

mtype = {red, yellow, green};

byte state = green;

int counter;

bit memory[length];

init {

...

}

Ralf Huuck COMP 4152 18

– logical: ||, &&, !
– arithmetic: +, -, /, %
– relational: >,<,<=,>=,==,!=
– vector access: v[i]
– record access: x.f
– process creation: run X()

Expressions

Ralf Huuck COMP 4152 19

– are execution steps of processes
– an important characteristic is executability:

For instance:

is the (proper) way of expressing something like:

x <= 10;

wait until(x <= 10);

Statements (1)

Ralf Huuck COMP 4152 20

• Expression statements
• not executable iff expression evaluates to 0

• Assignment statements
• always executable

• Skip statements
• always executable
• do “nothing” (only change control location)

• Print statements
• always executable

Statements (2)

6

Ralf Huuck COMP 4152 21

• Assert statements

• always executable
• expression evaluates to zero => program exits

• Statements are atomic
• in a concurrent program, each statement is executed

without interleaving with other processes

assert(<expression>);

Statements (3)

Ralf Huuck COMP 4152 22

Control Flow (1)

• Select construct

• What does it do?
• if a (random) choice is executable, continues execution

with the corresponding branch
• if no choice is executable, the whole select is not

executable
• if more than one choice is executable, we say the

selection is non-deterministic

if

:: <choice1> -> <stat11>; <stat12>; …

:: <choice2> -> <stat21>; <stat22>; …

…

fi;

Ralf Huuck COMP 4152 23

• Loop construct

• What does it do?
• same as the selection, except that at the end of a branch

it loops back and repeats the choice selection

do

:: <choice1> -> <stat11>; <stat12>; …

:: <choice2> -> <stat21>; <stat22>; …

…

od;

Control Flow (2)

Ralf Huuck COMP 4152 24

• The else choice
• is executable only when no other choice is executable

• The break statement
• transfers control at the end of loop

• The goto statement
• transfers control to a labeled location

Control Flow (3)

7

Ralf Huuck COMP 4152 25

Traffic Light Example

mtype = {red, yellow, green};

byte state = green;

init {

do

:: (state == green) -> state = yellow;

:: (state == yellow) -> state = red;

:: (state == red) -> state = green;

od

}

Ralf Huuck COMP 4152 26

• Processes can spawn other processes using the run
expression
proctype foo(int x; byte y) {…}

init {

int pid;

pid = run foo(256, 255);

/* or simply: */

run foo(256, 255);

…

}

Concurrency

Ralf Huuck COMP 4152 27

• Premises:
– two or more processes composed of atomic statements
– one processor shared between processes

• Problems:
– worst-case complexity is exponential in number of

processes
– improper mutex (locking) may cause race conditions

Interleaving

Ralf Huuck COMP 4152 28

Complexity

s11

s12

s21

s22

Î
s12

s11

s21

s21

. . .

• how many states can be reached in this example?

• express this number as function of:

K = number of processes

N = number of states/process

8

Ralf Huuck COMP 4152 29

Reducing Complexity (1)

• if a statement inside atomic is not executable,
transfer temporarily control to another process

Î
s12

s11

s21

s21s11

s12

s21

s22

atomic

. . .

Ralf Huuck COMP 4152 30

Reducing Complexity (2)

• if a statement inside d_step is not executable
=> error (block inside d_step)

• no if, do, break, goto, run allowed
inside d_step (i.e., deterministic step)

Î

s11+s12

s21

s21s11

s12

s21

s22

d_step

. . .

Ralf Huuck COMP 4152 31

Apprentice Example

• Good apprentice

• creates 2 identical copies,
• share variable counter
• interleaving

int counter = 0;

active[2] proctype incr() {

counter = counter + 1;

}

Ralf Huuck COMP 4152 32

Apprentice Example

• Good apprentice

• Bad apprentice

int counter = 0;

active[2] proctype incr() {

counter = counter + 1;

}

int counter = 0;

active[2] proctype incr() {

int tmp;

tmp = counter + 1;

counter = tmp;

}

9

Ralf Huuck COMP 4152 33

Apprentice Example

• Good apprentice

• Bad apprentice

int counter = 0;

active[2] proctype incr() {

counter = counter + 1;

}

int counter = 0;

active[2] proctype incr() {

int tmp;

tmp = counter + 1;

counter = tmp;

}

atomic

Ralf Huuck COMP 4152 34

Mutual Exclusion (bad) Example

proctype X() {

y = 1;

x == 0;

mutex ++;

mutex --;

y = 0;

}

proctype Y() {

x = 1;

y == 0;

mutex ++;

mutex --;

x = 0;

}

proctype monitor() {

assert(mutex != 2);

}

Ralf Huuck COMP 4152 35

Dekker’s Mutual Exclusion

proctype A() {

x = 1;

turn = Bturn;

(y == 0) || (turn == Aturn);

mutex ++;

mutex --;

x = 0;

}

proctype B() {

y = 1;

turn = Aturn;

(x == 0) || (turn == Bturn);

mutex ++;

mutex --;

y = 0;

}

proctype monitor() {

assert(mutex != 2);

}

Ralf Huuck COMP 4152 36

Bakery Mutual Exclusion

• does verification terminate?

proctype A() {

do

:: 1 -> turnA = 1;

turnA = turnB + 1;

(turnB == 0) || (turnA < turnB);

mutex ++; mutex --;

turnA = 0;

od

}

10

Ralf Huuck COMP 4152 37

1. Message passing
2. Rendez-vous synchronization

• Both methods rely on channels:

– if dim is 0 then q is a rendez-vous port
– otherwise q is an asynchronous channel

chan q = [<dim>] of {<type>};

chan q; /* just declaration */

Communication

Ralf Huuck COMP 4152 38

• Send statement

– for rendez-vous channels is executable iff
another process is ready to receive at the same
time Î both processes are involved in a rendez-
vous

– for asynchronous queues is executable iff the
queue is not full

q ! <expr>;

Communication (2)

Ralf Huuck COMP 4152 39

• Receive statement

– for rendez-vous channels is executable iff
another process is ready to send at the same
time Î both processes are involved in a rendez-
vous

– for asynchronous queues is executable iff the
queue is not empty

q ? <var>;

q ? _;

Communication (2)

Ralf Huuck COMP 4152 40

• Channel test statement

– same as receive for rendez-vous channels

– for asynchronous queues is executable iff the first
value in the queue matches the result of expr

q ? <expr>;

Communication (3)

11

Ralf Huuck COMP 4152 41

chan lock = [1] of bit;

proctype foo(chan q) {

q ? 1;

/* critical section */

q ! 1;

}

init {

lock ! 1;

run foo(lock);

run foo(lock);

}

Inter-locking Example

Ralf Huuck COMP 4152 42

Correctness Claims

Ralf Huuck COMP 4152 43

Claims

• basic assertions
• end state labels
• progress state labels
• accept state labels
• never claims
• trace assertions

all provide means to check requirements

Ralf Huuck COMP 4152 44

Basic Assertions

assert {expression}

proctype monitor() {

assert(mutex != 2);

}

SPIN reports any violation of assertions
during simulation or verification.

spin: line 2 “pan”, Error: assertion violated

12

Ralf Huuck COMP 4152 45

Meta Labels

• labels with special meaning
• reserved
• only available in verification mode

• end states
• progress states
• accept states

Labels for

Ralf Huuck COMP 4152 46

• an end state in PROMELA is a state with no
successors

• end states can be labeled as valid by
introducing labels that start with end
– end0,endsome, …

• at the end of each process there is a default
valid end state

• a deadlock is a state with no successors in
which at least one process is not in a valid
end state

End States

Ralf Huuck COMP 4152 47

Example End State

proctype X() {

y = 1;

endX:

x == 0;

mutex ++;

mutex --;

y = 0;

}

proctype Y() {

x = 1;

endY:

y == 0;

mutex ++;

mutex --;

x = 0;

}

Allow processes to block.
Ralf Huuck COMP 4152 48

Progress States

• similar to end states
• progress states are introduced by labels that

start with progress
– progress0,progresssome, …

• verifier must in each execution reach progress
label infinitely often

• typically requires fairness

13

Ralf Huuck COMP 4152 49

Example Progress State

proctype X() {

y = 1;

x == 0;

mutex ++;

mutex --;

progressX:

y = 0;

}

proctype Y() {

x = 1;

y == 0;

mutex ++;

mutex --;

progressY:

x = 0;

}

Mutual exclusion infinitely many times for both processes.
Ralf Huuck COMP 4152 50

Accept States

• dual to end states
• accept states are introduced by labels that start

with accept
– accept0,acceptsome, …

• verifier must not reach in any execution reach
accept label in infinitely often

Ralf Huuck COMP 4152 51

Example Accept State

proctype X() {

y = 1;

x == 0;

mutex ++;

mutex --;

y = 0;

}

proctype Y() {

x = 1;

y == 0;

mutex ++;

mutex --;

acceptY:

x = 0;

}

Mutual exclusion infinitely many times for X only.
Ralf Huuck COMP 4152 52

Never Claims (1)

never {statement}

• special type of process, is instantiated once
• used to detect illegal behaviors
• SPIN has LTL to never claim translator

14

Ralf Huuck COMP 4152 53

Never Claims (2)

never {statement}

never {

do

:: !p -> break

:: else

od

}

SPIN reports any violation of never claims
during simulation or verification.

Invariant p:

Ralf Huuck COMP 4152 54

SPIN Options

Ralf Huuck COMP 4152 55

Simulation

random simulation: spin model

-i performs interactive simulation
-jN skips first N steps of random/guided sim.
-p shows execution of states
-s/-r shows details about send/receive
-t interactive sim following on produced execution trace
-v verbose

and many more!

Ralf Huuck COMP 4152 56

Generating Verifier

-a syntax check and verifier generation
-f formula generates never claim from LTL
-F file same but from file

15

Ralf Huuck COMP 4152 57

Verification

-A suppresses basic assertion violations
-a use for accept cycle detection
-f uses weak fairness
-l use for progress cycles

Ralf Huuck COMP 4152 58

References

• http://spinroot.com/
• quick references http://spinroot.com/spin/Man/Quick.html

you better read them ☺

