
1

Ralf Huuck Algorithmic Verification 1

Model Checking LTL

Ralf Huuck

Ralf Huuck Algorithmic Verification 2

Acknowledgments

Slides partially based on earlier lecture by Doron Peled.

Ralf Huuck Algorithmic Verification 3

Outline

1. Checking for invariants, deadlock etc.
2. Checking full LTL

Ralf Huuck Algorithmic Verification 4

1. Checking Invariants

and more

2

Ralf Huuck Algorithmic Verification 5

Depth First Search

Program DFS
For each s such that Init(s)

dfs(s)
end DFS

Procedure dfs(s)
for each s’ such that

R(s,s’) do
If new(s’) then dfs(s’)

end dfs.

Ralf Huuck Algorithmic Verification 6

Start from an initial state

q3

q4

q2

q1

q5

q1

q1

Stack:

Hash table:

Ralf Huuck Algorithmic Verification 7

Continue with a successor

q3

q4

q2

q1

q5

q1 q2

q1

q2

Stack:

Hash table:

Ralf Huuck Algorithmic Verification 8

One successor of q2.

q3

q4

q2

q1

q5

q1 q2 q4

q1

q2

q4

Stack:

Hash table:

3

Ralf Huuck Algorithmic Verification 9

Backtrack to q2 (no new successors for q4).

q3

q4

q2

q1

q5

q1 q2 q4

q1

q2

Stack:

Hash table:

Ralf Huuck Algorithmic Verification 10

Backtracked to q1

q3

q4

q2

q1

q5

q1 q2 q4

q1

Stack:

Hash table:

Ralf Huuck Algorithmic Verification 11

Second successor to q1.

q3

q4

q2

q1

q5

q1 q2 q4 q3

q1

q3

Stack:

Hash table:

Ralf Huuck Algorithmic Verification 12

Backtrack again to q1.

q3

q4

q2

q1

q5

q1 q2 q4 q3

q1

Stack:

Hash table:

4

Ralf Huuck Algorithmic Verification 13

How can we check properties with DFS?

Invariants: check that all reachable states
satisfy the invariant property. If not, show
a path from an initial state to a bad state.

Deadlocks: check whether a state where no
process can continue is reached.

Dead code: as you progress with the DFS, mark all the
transitions that are executed at least once.

Ralf Huuck Algorithmic Verification 14

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
NC0,NC1

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=1
L0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1

G¬(PC0=CR0∧ PC1=CR1) is in an invariant!

CR = critical region/section
NC= non-critical
Turn= turn variable in mutual exclusion algorithm

Ralf Huuck Algorithmic Verification 15

Want to do more!

• Want to check more properties.
• Want to have a uniform algorithm to deal with all kinds of

properties.
• This is done by writing specification in temporal logic.
• Temporal logic specification can be translated into

automata.

Ralf Huuck Algorithmic Verification 16

2. Checking LTL

5

Ralf Huuck Algorithmic Verification 17

Model Checking

Model Checking Problem:

M ² φ ?

Typical: Model is given as Kripke structure/ω−Automata and
property in temporal logic.

System satisfies property ?

Ralf Huuck Algorithmic Verification 18

G (Turn=0 ⇒ F Turn=1)

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
NC0,NC1

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=1
L0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1

Ralf Huuck Algorithmic Verification 19

Turn=0
CR0,NC1

Turn=0
NC0,NC1

Turn=0
CR0,L1

Turn=1
L0,CR1

Turn=1
NC0,CR1

Turn=1
NC0,NC1

Turn=0
L0,L1

Turn=0
L0,NC1

Turn=0
NC0,L1

Turn=1
L0,NC1

Turn=1
NC0,L1

Turn=1
L0,L1

Init

Kripke Structure to Automaton

Ralf Huuck Algorithmic Verification 20

• Add an additional initial node.
• Propositions are attached to incoming nodes.
• All nodes are accepting.

Turn=0
L0,L1

Turn=1
L0,L1

Init

Turn=0
L0,L1

Turn=1
L0,L1

: : : :

Kripke Structure to Automaton

6

Ralf Huuck Algorithmic Verification 21

Model Checking as Inclusion Checking

• We want to find a correctness condition for a model to satisfy a
temporal specification.

• Since both can be modeled as automata, we can check the
relation between their languages.

• Language of a model: L(Model).
• Language of a specification: L(Spec).

We need: L(Model) ⊆ L(Spec).

Ralf Huuck Algorithmic Verification 22

Correctness

All sequences

Sequences satisfying Spec

Program executions

Ralf Huuck Algorithmic Verification 23

How to model-check?

• Show that L(Model) ⊆ L(Spec).

• Equivalently:

Show that L(Model) ∩ L(Spec) = Ø.

• How? Check that Amodel∩ A¬Spec is empty.

M S M ¬ S

M ⊆ S M ∩ ¬ S ≠ ∅

Complement

Ralf Huuck Algorithmic Verification 24

What do we need to know?

1. How to intersect two automata?
2. How to complement an automaton?
3. How to check for emptiness of an automaton ?
4. How to translate from LTL to an automaton?

L(Model) ∩ L(Spec) = Ø.

7

Ralf Huuck Algorithmic Verification 25

Intersecting Automata
(re-visited)

Ralf Huuck Algorithmic Verification 26

1. Intersecting two automata (finite words)

• A1=h Σ, S1, Δ1, s01, F1 i and A2= h Σ, S2, Δ2, s02, F2 i

• A1 ∩ A2 =

– Each state is a pair (s,t): s ∈ S1 and t ∈ S1.

– Initial state: pair (s,t) such that s=s01 and t=s02.

– Accepting states: pairs (s,t) such that s ∈ F1 and t ∈ F2

– ((s,t) a (s’,t’)) is a transition if (s,a,s’) ∈ Δ1, and (t,a,t’) ∈ Δ2.

Ralf Huuck Algorithmic Verification 27

Example - intersecting two automata

b

a

a
b

s0 s1A1:

A2:

L(A1) = (a+b)∗a + ε
(words ending with ‘a’
+ empty word)

What should be the language of A1 ∩ A2 ?

L(A2) = (ba)* + (ba)*b + ε
(words that alternate
between b and a + empty
word)

a
b

t0 t1

Ralf Huuck Algorithmic Verification 28

Example - intersecting two automata

1. States: (s0,t0), (s0,t1), (s1,t0), (s1,t1).
2. Initial state(s): (s0,t0).
3. Accepting states: (s0,t0), (s0,t1).

A1:

A2:

A1 ∩ A2:

b

a

a
b

s0 s1

a
b

t0 t1

8

Ralf Huuck Algorithmic Verification 29

s0,t0

s0,t1

s1,t1

s1,t0b

b

a

aA1 ∩ A2:

L(A1 ∩ A2) = (ba)* + ε

Example - intersecting two automata

A1:

A2:

b

a

a
b

s0 s1

a
b

t0 t1

Ralf Huuck Algorithmic Verification 30

Intersecting two Buchi automata (infinite words)

• Previous method doesn’t work:

a
b

s0 s1a
b Infinite a’s

b
a

t0 t1b
a Infinite b’s

s0, t0

s0, t1 s1, t0

a b
s1, t1

a

b

a b

Empty language !

Ralf Huuck Algorithmic Verification 31

Intersecting two Buchi automata (infinite words)

• Strategy:
– “Multiply” the product automaton by 3

(S = S1 × S2 × {0,1,2})

– Start from the ‘0’ copy.
– Transition to the ‘1’ copy when visiting a state from F1
– Transition to the ‘2’ copy if in a ‘1’ state and visiting a state from

F2, and in the next state back to a ‘0’ state.
– Make the ‘2’ copy an accepting set.

Ralf Huuck Algorithmic Verification 32

Intersecting two Buchi automata (infinite words)

a
b

s0 s1a
b

b
a

t0 t1b
a

a
a b

b

a
a

a

a b

h s1,t0,2 i

h s0,t1,1 i

b b

h s0,t0,0 i

h s1,t0,0 i

h s0,t1,0 i

There are total of 12 states in the
product automaton.
The reachable part of A1 ∩ A2 is:

9

Ralf Huuck Algorithmic Verification 33

Complementing Automata

Ralf Huuck Algorithmic Verification 34

2. How to complement?

• Complementation is hard!

• If we know how to translate an LTL formula to a
Buchi automaton, we can:

1. Build an automaton A for ϕ, and complement A, or

2. Negate the property, obtaining ¬ϕ (the sequences that
should never occur). Build an automaton for ¬ϕ .

We will do 2., so we do not have to bother with complememtation.

Ralf Huuck Algorithmic Verification 35

Checking for Emptiness

Ralf Huuck Algorithmic Verification 36

3. How to check for emptiness?

•Need to check if there exists an accepting run (passes through
an accepting state infinitely often).

•This is called checking for emptiness, because if no such run
exists, then L(A) = ∅

10

Ralf Huuck Algorithmic Verification 37

Emptiness and accepting runs

•If there is an accepting run, then it contains at least one
accepting state an infinite # of times.

•This state must appear in a cycle.
•So, find a reachable accepting state (by DFS) on a cycle.
•How to detect cycles?

Ralf Huuck Algorithmic Verification 38

Finding accepting runs

• Rather than looking for cycles, look for SCCs:

– A Strongly Connected Component (SCC): a set of nodes
where each node is reachable from all others.

– Finding SCC’s is linear in the size of the graph.

– Find a reachable SCC with an accepting node.

Ralf Huuck Algorithmic Verification 39

LTL to Automata

Ralf Huuck Algorithmic Verification 40

4. From LTL to automata

“always eventually p”: GF p “always p until q”: G (pUq)

• Exponential blow-up
• Formulas are usually small

p
q

p ∨ q

p

¬p
¬p p

11

Ralf Huuck Algorithmic Verification 41

4. LTL to automata

Is there an algorithm to transform LTL into Buchi?

Yes , but

• transforming LTL into automata is non-trivial
• several approaches, none is obvious
• next lecture

Ralf Huuck Algorithmic Verification 42

Lessons learnt so far

• simple DFS algorithm allows to check for invariants,
deadlocks etc.

• model checking problem can be seen as inclusion problem
• we had already all it takes, if only we knew how to translate

LTL into Buchi

