
1

Algorithmic Verification Ralf Huuck 1

Partial Order Reduction

Ralf Huuck

Algorithmic Verification Ralf Huuck 2

The Problem

Many concurrent components:

Trying to build the product state space ...

Algorithmic Verification Ralf Huuck 3

State Explosion

Worst case: number of states
increases exponentially

with number of processes.

Worst case: number of states
increases exponentially

with number of processes.

Algorithmic Verification Ralf Huuck 4

What to do?

Worst case: number of states
increases exponentially

with number of processes.

Worst case: number of states
increases exponentially

with number of processes.

Try minimizing the effect by reduction heuristics, e.g.:
Partial Order Reduction

Try minimizing the effect by reduction heuristics, e.g.:
Partial Order Reduction

2

Algorithmic Verification Ralf Huuck 5

Overview

• Informal explanation
• Framework for partial order reduction (POR)
• POR in SPIN
• Summary

Algorithmic Verification Ralf Huuck 6

Introduction

Algorithmic Verification Ralf Huuck 7

Motivation

S0 S1

x:=1 g:=g+2
S2

S’0 S’1
y:=1 g:=g*2

S’2

consider interleaving execution,
what are the possible runs?

Algorithmic Verification Ralf Huuck 8

Expanded Asynchronous Product

0,0,0 x,y,g

1,0,0 0,1,0

1,1,01,0,2 0,1,0

1,1,01,1,2

1,1,21,1,4

x:=1 y:=1

y:=1 x:=1

x:=1y:=1

g:=g+2

g:=g+2

g:=g+2

g:=g*2

g:=g*2

g:=g*2

3

Algorithmic Verification Ralf Huuck 9

Expanded Asynchronous Product

0,0,0 x,y,g

1,0,0 0,1,0

1,1,01,0,2 0,1,0

1,1,01,1,2

1,1,21,1,4

x:=1 y:=1

y:=1 x:=1

x:=1y:=1

g:=g+2

g:=g+2

g:=g+2

g:=g*2

g:=g*2

g:=g*2

How many
runs are in
this system?

Algorithmic Verification Ralf Huuck 10

Possible Runs

0,0,0 x,y,g

1,0,0 0,1,0

1,1,01,0,2 0,1,0

1,1,01,1,2

1,1,21,1,4

x:=1 y:=1

y:=1 x:=1

x:=1y:=1

g:=g+2

g:=g+2

g:=g+2

g:=g*2

g:=g*2

g:=g*2

These 3 plus
3 symmetric
ones, i.e., 6

Algorithmic Verification Ralf Huuck 11

Dependencies (1)

S0 S1

x:=1 g:=g+2
S2

S’0 S’1
y:=1 g:=g*2

S’2

assume x, y are local variables,
g is a global variable

Which operations are actually dependent
and which are independent?

Algorithmic Verification Ralf Huuck 12

Dependencies (2)

S0 S1

x:=1 g:=g+2
S2

S’0 S’1
y:=1 g:=g*2

S’2

Dependent:
g:=g+2, g:=g*2 share same object
x:=1, g:=g+2 ordered in same automaton
y:=1, g:=g*2 ordered in same automaton

Independent:
x:=1, y:=1
x:=1, g:=g*2
y:=1, g:=g+2

4

Algorithmic Verification Ralf Huuck 13

Equivalent Runs

0,0,0 x,y,g

1,0,0 0,1,0

1,1,01,0,2 0,1,0

1,1,01,1,2

1,1,21,1,4

x:=1 y:=1

y:=1 x:=1

x:=1y:=1

g:=g+2

g:=g+2

g:=g+2

g:=g*2

g:=g*2

g:=g*2

These 3 runs
are equivalent
wrt independencies,
same for other 3 runs

Algorithmic Verification Ralf Huuck 14

Idea

• partitioning into equivalent classes
• we have to select one run in each class only

Algorithmic Verification Ralf Huuck 15

Necessary Runs

0,0,0 x,y,g

1,0,0 0,1,0

1,1,01,0,2 0,1,0

1,1,01,1,2

1,1,21,1,4

x:=1 y:=1

y:=1 x:=1

x:=1y:=1

g:=g+2

g:=g+2

g:=g+2

g:=g*2

g:=g*2

g:=g*2

Eliminating all
independencies.
2 runs left

Algorithmic Verification Ralf Huuck 16

Proving Properties

• G(g=0 ∨ g>x)
• F(g≥2)

• (g=0)U(x=1) all hold in reduced graph, i.e.,
considering only 2 necessary runs

5

Algorithmic Verification Ralf Huuck 17

Proving Properties

• G(g=0 ∨ g>x)
• F(g≥2)

• (g=0)U(x=1)

• G(x≥y)

all hold in full and reduced graph,
with states of the 2 necessary runs

holds in reduced graph,
but not full graph

WHY?

Algorithmic Verification Ralf Huuck 18

Visibility

• introduces dependency that was not assumed to exist
• dependencies not only from data objects but also formula
• remove x:=1, y:=1 from independencies

Algorithmic Verification Ralf Huuck 19

Equivalent Runs

0,0,0 x,y,g

1,0,0 0,1,0

1,1,01,0,2 0,1,0

1,1,01,1,2

1,1,21,1,4

x:=1 y:=1

y:=1 x:=1

x:=1y:=1

g:=g+2

g:=g+2

g:=g+2

g:=g*2

g:=g*2

g:=g*2

Partition 1

Algorithmic Verification Ralf Huuck 20

Equivalent Runs

0,0,0 x,y,g

1,0,0 0,1,0

1,1,01,0,2 0,1,0

1,1,01,1,2

1,1,21,1,4

x:=1 y:=1

y:=1 x:=1

x:=1y:=1

g:=g+2

g:=g+2

g:=g+2

g:=g*2

g:=g*2

g:=g*2

Partition 2

6

Algorithmic Verification Ralf Huuck 21

Equivalent Runs

0,0,0 x,y,g

1,0,0 0,1,0

1,1,01,0,2 0,1,0

1,1,01,1,2

1,1,21,1,4

x:=1 y:=1

y:=1 x:=1

x:=1y:=1

g:=g+2

g:=g+2

g:=g+2

g:=g*2

g:=g*2

g:=g*2

Partition 3

Algorithmic Verification Ralf Huuck 22

Equivalent Runs

0,0,0 x,y,g

1,0,0 0,1,0

1,1,01,0,2 0,1,0

1,1,01,1,2

1,1,21,1,4

x:=1 y:=1

y:=1 x:=1

x:=1y:=1

g:=g+2

g:=g+2

g:=g+2

g:=g*2

g:=g*2

g:=g*2

Partition 4

Algorithmic Verification Ralf Huuck 23

Questions

• Given a set of processes how can we automatically identify
classes of equivalent runs?

• How to avoid full construction upfront, but
deciding on-the-fly which states and transitions are
necessary?

Such techniques are addressed as partial
order reduction, which, e.g., SPIN makes use of.

Algorithmic Verification Ralf Huuck 24

Theory

7

Algorithmic Verification Ralf Huuck 25

Labeled Transition System

(S,s0,A,τ,Π,L) is labeled transition system
where
• S finite set of states
• s0 initial state
• A finite set of actions
• τ: S× A→ S (partial) transition function
• Π finite set of Boolean propositions
• L:S→ 2Π labeling function

(similar to a Kripke structure with symbols on transitions)

Algorithmic Verification Ralf Huuck 26

enabled/reachable

• action a∈A is enabled in state s∈S
iff τ(a,s) is defined

• enabled(s) denotes set of all actions enabling in transition
from state s

• sate s is deadlock state iff enabled(s)=∅
• execution sequence is sequence of subsequent transitions
• state s is reachable iff there exists an execution sequence

from s0 to s

Algorithmic Verification Ralf Huuck 27

Example

0,0,0 x,y,g

1,0,0 0,1,0

1,1,01,0,2 0,1,0

1,1,01,1,2

1,1,21,1,4

x:=1 y:=1

y:=1 x:=1

x:=1y:=1

g:=g+2

g:=g+2

g:=g+2

g:=g*2

g:=g*2

g:=g*2

enabled actions
in (0,0,0)

deadlock statedeadlock state

Algorithmic Verification Ralf Huuck 28

Partial Order Reduction

• avoid construction including “unnecessary” interleavings if
possible

• decide per state which outgoing transitions to include
• reduction function r:S→ 2A, i.e., which actions have to be

taken care of in a certain state

8

Algorithmic Verification Ralf Huuck 29

Reduced LTS

smallest (Sr,s0r,Ar,τr,Πr,Lr) such that

• Sr ⊆ S,

• s0=s0r,
• Lr=L∩(Sr× 2Π)

• for any s∈ Sr and a∈r(s) where τ(s,a) is defined,
τr(s,a) is defined

Algorithmic Verification Ralf Huuck 30

Independence

two actions a,b∈A (a≠b) are independent
iff for all states s∈S where {a,b}⊆enabled(s)

1. b∈enabled(τ(s,a)) and a∈enabled(τ(s,b))

2. τ(τ(s,a),b) = τ(τ(s,b),a)

This means actions do not disable each other (1) and
their permutation leads to the same state (2).

Algorithmic Verification Ralf Huuck 31

Example

0,0,0 x,y,g

1,0,0 0,1,0

1,1,01,0,2 0,1,0

1,1,01,1,2

1,1,21,1,4

x:=1 y:=1

y:=1 x:=1

x:=1y:=1

g:=g+2

g:=g+2

g:=g+2

g:=g*2

g:=g*2

g:=g*2

independent
actions

Other independent
actions?

Other independent
actions?

Algorithmic Verification Ralf Huuck 32

Proving Properties

9

Algorithmic Verification Ralf Huuck 33

Properties

POR is typically done with respect to certain classes of
properties, e.g.:

• absence of deadlock,
• local property, depends on state of a single process

or state of single shared object
• next-free LTL property, i.e., LTL with until operator only

Algorithmic Verification Ralf Huuck 34

Preserving Deadlock

To preserve deadlock states the reduction function must
satisfy:

C0 r(s)=∅ iff enabled(s)=∅
C1 (persistency) for any execution sequence

with all ai∉r(s) (0·i<n), an-1 is independent of all ai∈ r(s)

Algorithmic Verification Ralf Huuck 35

Example

s
α

α

β3 α

α

β1

β2

β2

β3

This path can be omittedThis path can be omitted

β1

deadlock statedeadlock state

Algorithmic Verification Ralf Huuck 36

Theorem

Any reduced system satisfying C0 and C1
preserves deadlocks.

Any reduced system satisfying C0 and C1
preserves deadlocks.

10

Algorithmic Verification Ralf Huuck 37

Local Properties

property φ is local
iff

for all s∈ S and independent actions a,b∈ A
if {a,b}⊆enabled(s) then:
if φ holds in s but not in τ(s,a)
then φ holds in τ(s,b) but not in τ(τ(s,b)a).

Intuition: φ cannot be changed by the combined effect of two
independent actions, it only depends on local changes.

Algorithmic Verification Ralf Huuck 38

Example

0,0,0 x,y,g

1,0,0 0,1,0

1,1,01,0,2 0,1,0

1,1,2 1,1,0

1,1,21,1,4

x:=1 y:=1

y:=1 x:=1

x:=1y:=1

g:=g+2

g:=g+2

g:=g+2

g:=g*2

g:=g*2

g:=g*2

local
property

x=0

Algorithmic Verification Ralf Huuck 39

Preserving Local Properties

To preserve local properties the reduction function must
satisfy:

C2 (cycle) for any cyclic execution sequence

where, sn=s0 there is an si (0· i<n) such that r(si)=enabled(si)

Algorithmic Verification Ralf Huuck 40

Example

0

1

0

1

1b

a1

a0

a2

p

¬p

q

q

q

Two concurrent processes,
a’s and b are independent

11

Algorithmic Verification Ralf Huuck 41

Full State Graph

0

1

1

a1

a0

a2

p,q

p.q

p,q

0

1

1a1

a0

a2

¬p,q

¬p,q

¬p,q

b

b

b

Algorithmic Verification Ralf Huuck 42

Full State Graph

0

1

1

a1

a0

a2

p,q

p.q

p,q

0

1

1a1

a0

a2

¬p,q

¬p,q

¬p,q

b

b

ba’s and b are independent,
whenever having the choice
between them, why not choosing
some a?

Algorithmic Verification Ralf Huuck 43

Reduced State Graph?

0

1

1

a1

a0

a2

p,q

p.q

p,q

0

1

1a1

a0

a2

¬p,q

¬p,q

¬p,q

b

b

b

This means, we never see
b and never ¬p.

C2 requires in any cycle
there is an si (0· i<n) such
that r(si)=enabled(si).

Therfore, cannot hide ¬p completely!

Algorithmic Verification Ralf Huuck 44

Theorem

Any reduced system satisfying
C0, C1, and C2

preserves local properties.

Any reduced system satisfying
C0, C1, and C2

preserves local properties.

12

Algorithmic Verification Ralf Huuck 45

Next-free LTL

• only allows Until as temporal operator,
• strict subset of LTL
• cannot, e.g., distinguish between the next and the second

next state
• closed under stuttering

Algorithmic Verification Ralf Huuck 46

Invisibility

prop(φ) set of propositions in φ

• action a is φ-invisible in s iff
τ(s,a) is undefined or π∈ L(s) ⇔ π ∈ L(τ(s,a)) for all π∈
prop(φ)

• a is globally φ-invisible iff
it is φ-invisible for all s∈S

This means some action cannot change some truth value.

Algorithmic Verification Ralf Huuck 47

Preserving Next-free LTL

C3 (invisibility) for any state s∈S,
all actions are globally φ-invisible or r(s)=enabled(s)

Algorithmic Verification Ralf Huuck 48

Example (1)

s
α

α

β3 α

α

β1

β2

β2

β3

β1

¬p

p

p

p

p

¬p

¬p

¬p

α globally
φ−invisible
α globally
φ−invisible

Which LTL and/or next-free LTL
propertied do (not) hold here?

More sophisticated examples?

13

Algorithmic Verification Ralf Huuck 49

Example (2)

s
α

α

β3 α

α

β1

β2

β2

β3

β1

¬p

p

p

p

p

¬p

¬p

¬p

This path can be omittedThis path can be omitted

Algorithmic Verification Ralf Huuck 50

Theorem

Any reduced system satisfying
C0, C1, C2, and C3

preserves next-free LTL properties.

Any reduced system satisfying
C0, C1, C2, and C3

preserves next-free LTL properties.

Algorithmic Verification Ralf Huuck 51

Well, yes but ...

• We defined constraints such that a reduced system still
satisfies certain properties.

• But: How to find a suitable reduction?
• Also: building full state graph and then reducing is

inefficient.

Challenging!

Let’s have a look at SPIN ...

Algorithmic Verification Ralf Huuck 52

POR in SPIN

14

Algorithmic Verification Ralf Huuck 53

System Construction in SPIN

1. depth first search
2. reduction function based on process structure

Algorithmic Verification Ralf Huuck 54

Preliminaries

(S,s0,A,τ,Π,L) full LTS from set of processes P
each process P∈P is set of actions, i.e., P⊆A

we assume: P is a partitioning of A, i.e,
1. P,Q∈P, P≠Q ⇒ P∩Q=∅, and

2. A=∪P∈PP

Pid:A→P returns process (ID) for a given action

Algorithmic Verification Ralf Huuck 55

Restriction of Process Structure

We do not allow concurrency within a process:

for all a,b∈ P, a≠ b, s∈ S:
a,b∈enabled(s) ⇒ b∉enabled(τ(s,a))

This means we still have choice (if-then-else) in a process,
but no processes within processes.

Algorithmic Verification Ralf Huuck 56

Safety

Action a is safe
iff

it is independent from any b where Pid(a)≠Pid(b)

15

Algorithmic Verification Ralf Huuck 57

Safety Example

S0 S1

x:=1 g:=g+2
S2

S’0 S’1
y:=1 g:=g*2

S’2

Which actions are safe in this example?

Algorithmic Verification Ralf Huuck 58

Safety Example

S0 S1

x:=1 g:=g+2
S2

S’0 S’1
y:=1 g:=g*2

S’2

safe actions

They are independent of any action in other process.

Algorithmic Verification Ralf Huuck 59

Next-free Safety

Action a is safe
iff

it is independent from any b where Pid(a)≠Pid(b)

Action a is next-free safe for some φ∈LTL-X

iff

• it is independent from any b where Pid(a)≠Pid(b), and
• globally φ-invisible

Algorithmic Verification Ralf Huuck 60

Next-free Safe Example

S0 S1

x:=1 g:=g+2
S2

S’0 S’1
y:=1 g:=g*2

S’2

Which actions are next-free safe for:

• G (g=2)
• G (x<g)

16

Algorithmic Verification Ralf Huuck 61

Next-free Safe Example

S0 S1

x:=1 g:=g+2
S2

S’0 S’1
y:=1 g:=g*2

S’2

next-free safe actions
for φ=G (g=2)

Other (counter)examples?Other (counter)examples?

Algorithmic Verification Ralf Huuck 62

Reduction Function Ample (part 1)

Let s∈S be a state. Let P∈P be a process such that
1. enabled(s)∩ P ≠∅
2. for all a∈enabled(s)∩P, a is (next-free) safe
3. for all a∈enabled(s)∩P, τ(s,a) is not on DFS stack

Algorithmic Verification Ralf Huuck 63

Reduction Function Ample

Let s∈S be a state. Let P∈P be a process such that
1. enabled(s)∩ P ≠∅
2. for all a∈enabled(s)∩P, a is (next-free) safe
3. for all a∈enabled(s)∩P, τ(s,a) is not on DFS stack

.

Remember DFS algorithm?
Stack keeps record of states we
have seen before, but not fully

explored.

Algorithmic Verification Ralf Huuck 64

Reminder: DFS Algorithm

q3

q4

q2

q1

q5

q1 q2 q4

q1

q2

q4

Stack:

Hash table:

17

Algorithmic Verification Ralf Huuck 65

Reduction Function Ample (part 2)

Let s∈S be a state. Let P∈P be a process such that
1. enabled(s)∩ P ≠∅
2. for all a∈enabled(s)∩P, a is (next-free) safe
3. for all a∈enabled(s)∩P, τ(s,a) is not on DFS stack

We define a reduction function ample as follows:
• if there is no such process then ample(s)=enabled(s).
• otherwise choose arbitrary P satisfying above

requirements and define ample(s)=enabled(s)∩P.

Algorithmic Verification Ralf Huuck 66

Example (POR deadlock)

0,0,0 x,y,g

1,0,0 0,1,0

1,1,01,0,2 0,1,0

1,1,2 1,1,0

1,1,21,1,4

x:=1 y:=1

y:=1 x:=1

x:=1y:=1

g:=g+2

g:=g+2

g:=g+2

g:=g*2

g:=g*2

g:=g*2

deadlock

What are the
ample sets?

Consider simple
safety only.

What are the
ample sets?

Consider simple
safety only.

Algorithmic Verification Ralf Huuck 67

Example (POR deadlock)

0,0,0 x,y,g

1,0,0 0,1,0

1,1,01,0,2 0,1,0

1,1,2 1,1,0

1,1,21,1,4

x:=1 y:=1

y:=1 x:=1

x:=1y:=1

g:=g+2

g:=g+2

g:=g+2

g:=g*2

g:=g*2

g:=g*2

deadlock

ample sets for
deadlock

ample sets for
deadlock

∅ ∅

Algorithmic Verification Ralf Huuck 68

Reduction (POR deadlock)

deadlock 0,0,0 x,y,g

0,1,0

1,1,0

1,1,2 1,1,0

1,1,21,1,4

y:=1

x:=1

g:=g+2

g:=g*2

g:=g*2

g:=g+2

18

Algorithmic Verification Ralf Huuck 69

Example (2)

x,y,gφ = F (g=2)

ample sets for
next free-safe

ample sets for
next free-safe

0,0,0

1,0,0 0,1,0

1,1,01,0,2 0,1,0

1,1,2 1,1,0

1,1,21,1,4

x:=1 y:=1

y:=1 x:=1

x:=1y:=1

g:=g+2

g:=g+2

g:=g+2

g:=g*2

g:=g*2

g:=g*2

∅ ∅

Algorithmic Verification Ralf Huuck 70

Reduction (2)

0,0,0 x,y,g

0,1,0

1,1,0

1,1,2 1,1,0

1,1,21,1,4

y:=1

x:=1

g:=g+2

g:=g*2

g:=g*2

φ = F (g=2)

g:=g+2

Algorithmic Verification Ralf Huuck 71

Example (3)

0,0,0 x,y,g

1,0,0 0,1,0

1,1,01,0,2 0,1,0

1,1,2 1,1,0

1,1,21,1,4

x:=1 y:=1

y:=1 x:=1

x:=1y:=1

g:=g+2

g:=g+2

g:=g+2

g:=g*2

g:=g*2

g:=g*2

φ = F (x<y)

ample sets for
next free-safe

ample sets for
next free-safe

∅ ∅

no reductionno reduction

Algorithmic Verification Ralf Huuck 72

On-the-fly Construction

Constructing full state space first and then reducing it is not
very smart, but:

.

Basically, use DFS algorithm for state space construction and
only follow the paths in the ample sets.

POR does not always help, but the more independent actions
the better.

We can do POR while construction the state spaceWe can do POR while construction the state space

19

Algorithmic Verification Ralf Huuck 73

Summary

Algorithmic Verification Ralf Huuck 74

Partial Order Reduction

• tackles state explosion
• general framework for reduction
• SPIN example for implementation of reduction function
• other methods out there, e.g., symmetry reduction,

automata minimizations, abstractions etc.

Algorithmic Verification Ralf Huuck 75

Good news ☺

We are done with “standard” model checking.We are done with “standard” model checking.

