COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein
Formal Methods

locales
Intro & motivation, getting started with Isabelle

Foundations & Principles
- Lambda Calculus
- Higher Order Logic, natural deduction
- Term rewriting

Proof & Specification Techniques
- Inductively defined sets, rule induction
- Datatypes, recursion, induction
- More recursion, Calculational reasoning
- Hoare logic, proofs about programs
- Locales, Presentation
LAST TIME

- Hoare logic rules
- Soundness of Hoare logic
- Verification conditions
- Example program proofs
Isar is based on contexts

\textbf{Theorem} \(\bigwedge x. A \rightarrow C \)

\textbf{Proof} -
\begin{itemize}
 \item \textbf{fix} \(x \)
 \item \textbf{assume} \(\text{Ass: } A \)
 \item \textbf{:}
 \item \textbf{from} \(\text{Ass show } C \ldots \)
\end{itemize}

\textbf{qed}

\(x \) and \(\text{Ass} \) are visible inside this context
Locales are extended contexts

- Locales are named
- Fixed variables may have syntax
- It is possible to add and export theorems
- It is possible to instantiate locales
- Locale expression: combine and modify locales
Locales consist of **context elements**.

- **fixes** Parameter, with syntax
- **assumes** Assumption
- **defines** Definition
- **notes** Record a theorem
Declaring locale (named context) \textit{loc}:

\begin{verbatim}
locale \textit{loc} =
 \textit{loc1} + Import
 \textit{fixes} \ldots Context elements
 \textit{assumes} \ldots
\end{verbatim}
Theorems may be stated relative to a named locale.

lemma (in loc) P [simp]: $proposition$

$proof$

- Adds theorem P to context loc.
- Theorem P is in the simpset in context loc.
- Exported theorem $loc.P$ visible in the entire theory.
Demo: Locales 1
Parameters Must Be Consistent!

- Parameters in **fixes** are distinct.
- Free variables in **defines** occur in preceding **fixes**.
- Defined parameters cannot occur in preceding **assumes** nor **defines**.
Locale Expressions

Locale name: \(n \)

Rename: \(e \ q_1 \ldots q_n \)

Change names of parameters in \(e \).

Merge: \(e_1 + e_2 \)

Context elements of \(e_1 \), then \(e_2 \).

\[\rightarrow \] Syntax is lost after rename (currently).
DEMO: LOCALES 2
Locale expressions are converted to flattened lists of locale names.

- With full parameter lists
- Duplicates removed

Allows for **multiple inheritance**!
Move from **abstract** to **concrete**.

interpretation label: loc ["parameter 1" ... "parameter n"]

- Instantiates locale **loc** with provided parameters.
- Imports all theorems of **loc** into current context.
 - Instantiates theorems with provided parameters.
 - Interprets attributes of theorems.
 - Prefixes theorem names with **label**
- version for local Isar proof: **interpret**
Demo: Locales 3
PRESENTATION
ISABELLE’S BATCH MODE

- used to process and check larger number of theories
- no interactive niceties (no sorry, no quick_and_dirty)
- controlled by file ROOT.ML and script set isatool
- can save state for later use (images)
- can generate HTML and \LaTeX{} documentation
isatool <tool> <options>

Get help with:

- **isatool** shows available tools
- **isatool <tool> -?** shows options for <tool>

Interesting tools:

- **isatool mkdir** create session directory
- **make/makeall** run make for directory/all logics
- **usedir** batch session (documents, HTML, session graph)
- **document/latex** run \LaTeX{} for generated sources
<..>/isatool usedir -d pdf HOL <session>

<..>/<session>/ROOT.ML
<..>/<session>/MyTheory.thy
<..>/<session>/document/root.tex

→ In ROOT.ML:

 no_document use_thy "MyLibrary";
 use_thy "MyTheory";

→ In document/root.tex:

 • include Isabelle style packages (isabelle.sty, isabellesym.sty)
 • include generated files
 session.tex (for all theories) or
 MyTheory.tex
Creating Images:

```
<..>/<session>/isatool usedir -b HOL <session>
<..>/<session>/ROOT.ML
<..>/<session>/MyLibrary.thy
```

- **Processes** `ROOT.ML`
- **Saves state after processing in**
  ```
  ~/isabelle/heaps/<ML-system>/<session>
  ```
- **Makes** `<session>` **available as logic in menu Isabelle→Logics**
- **Direct start of Isabelle with new logic**: `Isabelle -l <session>`
MARKUP COMMANDS

- document structure commands:

 header section subsection subsubsection
 (meaning defined in isabelle.sty)

- normal text

 text \{\ldots\} text_raw \{\ldots\}

- text inside proofs

 txt \{\ldots\} txt_raw \{\ldots\}

- formal comments

 -- \{\ldots\}

- make text invisible:

 (* < *) \ldots (* > *)
Inside \LaTeX you can go back to Isabelle commands and syntax.

Useful Antiquotations:

@\{typ \ \tau\} \quad \text{print type } \tau

@\{term \ \ t\} \quad \text{print term } t

@\{prop \ \phi\} \quad \text{print proposition } \phi

@\{prop \ [display] \ \phi\} \quad \text{print proposition } \phi \text{ with linebreaks}

@\{prop \ [source] \ \phi\} \quad \text{check proposition } \phi, \text{ print its input}

@\{thm \ a\} \quad \text{print fact } a

@\{thm \ a \ [no_vars]\} \quad \text{print fact } a, \text{ fixing schematic variables}

@\{thm \ [source] \ a\} \quad \text{check availability of } a, \text{ print its name}

@\{text \ s\} \quad \text{print uninterpreted text } s
WRITING ABOUT ISABELLE THEORIES

To document definitions and proofs:

- put comments explanations directly in original theory
- keep explanations short and to the point

To write a paper/thesis about a formal development

- use a separate theory/document on top of the development
- only talk about the interesting parts
- use antiquoations for theorems and definitions
- use extra locales, definitions, syntax for polish
- make full proof document available separately
Know your audience. Use the right notation.

→ Change \LaTeX symbol interpretations
\renewcommand{\isasymLongrightarrow}{\isamath{\longrightarrow}}

→ Declare special \LaTeX output syntax:
syntax (latex) Cons :: ’a ⇒ ’a list ⇒ ’a list” (”·/ _” [66,65] 65)

→ Use translations to change output syntax:
syntax (latex) notEx :: ”(’a ⇒ bool) ⇒ bool” (binder ”\<notex>” 10)
translations ”\<notex>x. P” ≤ ”¬(∃x. P)”

in document/root.tex:
\newcommand{\isasymnotex}{\isamath{\neg\exists}}
making large developments more accessible

Math textbook:

Let \((A, \cdot, 0)\) in the following be a group with \(x \cdot y = y \cdot x\)

Isabelle:

- Use locales to formalize contexts
- Antiquotations are sensitive to current locale context
- Example:

  ```isabelle
  locale agroup = group + assumes com: "x \cdot y = y \cdot x"
  ...
  text (in agroup) \{\ast \ldots \ast\}
  ```

- More Examples: http://afp.sf.net
We have seen today ...

- Locale Declarations + Theorems in Locales
- Locale Expressions + Inheritance
- Locale Instantiation
- Generating LaTeX
- Writing a thesis/paper in Isabelle