MORE GENERAL TYPES

A term can have more than one type.

Example:

\[\Gamma \vdash \lambda x. \text{bool} \Rightarrow \text{bool} \]
\[\Gamma \vdash \lambda x. \alpha \Rightarrow \alpha \]

Some types are more general than others:
\[\tau \subseteq \sigma \text{ if there is a substitution } S \text{ such that } \tau = S(\sigma) \]

Examples:
\[\text{int} \Rightarrow \text{bool} \subseteq \alpha \Rightarrow \beta \]
\[\text{bool} \subseteq \beta \Rightarrow \alpha \]
\[\alpha \Rightarrow \alpha \]

MOST GENERAL TYPES

Fact: each type correct term has a most general type

Formally:
\[\Gamma \vdash t : \tau \quad \Rightarrow \exists \sigma. \Gamma \vdash t : \sigma \wedge (\forall \sigma'. \Gamma \vdash t : \sigma' \Rightarrow \sigma' \subseteq \sigma) \]

It can be found by executing the typing rules backwards.

\[\rightarrow \text{ type checking: checking if } \Gamma \vdash t : \tau \text{ for given } \Gamma \text{ and } \tau \]
\[\rightarrow \text{ type inference: computing } \Gamma \text{ and } \tau \text{ such that } \Gamma \vdash t : \tau \]

Type checking and type inference on \(\lambda \rightarrow \) are decidable.
What about \(\beta\) reduction?

Definition of \(\beta\) reduction stays the same.

Fact: Well typed terms stay well typed during \(\beta\) reduction

Formally: \[\Gamma \vdash s :: \tau \land s \rightarrow_{\beta} t \implies \Gamma \vdash t :: \tau \]

This property is called subject reduction

What about termination?

\(\beta\) reduction in \(\lambda \rightarrow\) always terminates.

(Alan Turing, 1942)

\(=_{\beta}\) is decidable
To decide if \(s \rightarrow_{\beta} t\), reduce \(s\) and \(t\) to normal form (always exists, because \(\rightarrow_{\beta}\) terminates), and compare result.

\(=_{\beta}\) is decidable
This is why Isabelle can automatically reduce each term to \(\beta\eta\) normal form

What does this mean for expressiveness?

Not all computable functions can be expressed in \(\lambda \rightarrow\)!

How can typed functional languages then Turing complete?

Fact:
Each computable function can be encoded as closed, type correct \(\lambda \rightarrow\) term using \(Y :: (\tau \rightarrow \tau) \rightarrow \tau\) with \(Y \ t \rightarrow_{\beta} t (Y \ t)\) as only constant.

\(Y\) is called fix point operator
used for recursion

Types and Terms in Isabelle

Types:
\[\tau ::= b \mid \nu \mid \nu C \mid \tau \rightarrow \tau \mid (\ldots \tau) K \]
\(b \in \{bool, int, \ldots\}\) base types
\(\nu \in \{a, \beta, \ldots\}\) type variables
\(K \in \{set, list, \ldots\}\) type constructors
\(C \in \{order, linord, \ldots\}\) type classes

Terms:
\[t ::= v \mid e \mid ?e \mid (t \ t) \mid (\lambda x. t) \]
\(v, x \in V, \ e \in C, \ V, C\) sets of names

\(=_{\tau}\) type constructors: construct a new type out of a parameter type.
Example: int list

\(=_{\tau}\) type classes: restrict type variables to a class defined by axioms.
Example: a :: order

\(=_{\tau}\) schematic variables: variables that can be instantiated.
Type Classes

- similar to Haskell’s type classes, but with semantic properties
 - `axclass order < ord`
 - `order_ax`: “x ≤ x”
 - `order_trans`: “[x ≤ y; y ≤ z] ⇒ x ≤ z”
 - theorems can be proved in the abstract
 - `lemma order_conj_trans`: “∀ x :: α. [x < y; y < z] ⇒ x < z”
 - can be used for subtyping
 - `axclass linorder < order`
 - `linorder_linear`: “x ≤ y ∨ y ≤ x”
 - can be instantiated
 - `instance nat :: "{order, linorder}"`

Schematic Variables

\[\frac{X}{X \land Y} \]

- X and Y must be instantiated to apply the rule

Solution:

Isabelle has free (x), bound (x), and schematic (?X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.

Higher Order Unification

Unification:
Find substitution σ on variables for terms s, t such that σ(s) = σ(t)

In Isabelle:
Find substitution σ on schematic variables such that σ(s) \(\alpha\beta\gamma\sigma\) (t)

Examples:
- `?X ∧ ?Y = αβγ x ∧ x` \[[?X ← x, ?Y ← x] \]
- `?P x = αβγ x ∧ x` \[[?P ← λx. x ∧ x] \]
- `P (?f x) = αβγ ?Y x` \[[?f ← λx. x, ?Y ← P] \]

Higher Order: schematic variables can be functions.

Higher Order Unification

- Unification modulo \(\alpha\beta\) (Higher Order Unification) is semi-decidable
- Unification modulo \(\alpha\beta\gamma\) is undecidable
- Higher Order Unification has possibly infinitely many solutions

But:
- Most cases are well-behaved
- Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:
- is a term in \(\lambda\) normal form where
 - each occurrence of a schematic variable is of the form \(\lambda f \ t_1 \ldots t_n\)
 - the \(t_1 \ldots t_n\) are \(\eta\)-convertible into \(n\) distinct bound variables
WE HAVE LEARNED SO FAR...

- Simply typed lambda calculus: λ^\rightarrow
- Typing rules for λ^\rightarrow, type variables, type contexts
- β-reduction in λ^\rightarrow satisfies subject reduction
- β-reduction in λ^\rightarrow always terminates
- Types and terms in Isabelle

PROOFS IN ISABELLE

General schema:

- \textbf{lemma} name: "<goal>"
- \textbf{apply} <method>
- \textbf{apply} <method>
- ...
- \textbf{done}

- Sequential application of methods until all \textbf{subgoals} are solved.

PREVIEW: PROOFS IN ISABELLE

Slide 13

Slide 14

THE PROOF STATE

1. $A_1 x_1 \ldots x_p [A_1; \ldots; A_n] \Longrightarrow B$
2. $A_y y_1 \ldots y_q [C_1; \ldots; C_m] \Longrightarrow D$

$x_1 \ldots x_p$ Parameters
$A_1 \ldots A_n$ Local assumptions
B Actual (sub)goal
ISABELLE THEORIES

Syntax:

theory MyTh = ImpTh1 + ... + ImpThn;
(declarations, definitions, theorems, proofs, ...)
end

⇒ MyTh: name of theory. Must live in file MyTh.thy
⇒ ImpThi: name of imported theories. Import transitive.

Unless you need something special:

theory MyTh = Main:

NATURAL DEDUCTION RULES

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A ⊢ B</td>
<td>A ∧ B</td>
</tr>
<tr>
<td>A ⊢ B</td>
<td>A ∨ B</td>
</tr>
<tr>
<td>A ⊢ B</td>
<td>A → B</td>
</tr>
</tbody>
</table>

For each connective (∧, ∨, etc):
- introduction and elimination rules

Proof by Assumption

apply assumption

proves

1. [B1; ...; Bn] ⊢ C

by unifying C with one of the Bi.

There may be more than one matching Bi and multiple unifiers.

Backtracking!

Explicit backtracking command: back

Intro rules decompose formulae to the right of →→.

apply (rule <intro-rule>)

Intro rule [A1; ...; An] ⊢ A means

⇒ To prove A it suffices to show A1 ... An.

Applying rule [A1; ...; An] ⊢ A to subgoal C:

⇒ unify A and C
⇒ replace C with n new subgoals A1 ... An
Elim rules decompose formulae on the left of \Rightarrow.

% apply (erule <elim-rule>)

Elim rule $[A_1; \ldots; A_n] \Rightarrow A$ means

\Rightarrow If I know A_i and want to prove A, it suffices to show $A_2; \ldots; A_n$.

Applying rule $[A_1; \ldots; A_n] \Rightarrow A$ to subgoal C:

Like rule but also

\Rightarrow unifies first premise of rule with an assumption

\Rightarrow eliminates that assumption