COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein
Formal Methods
Intro & motivation, getting started with Isabelle

Foundations & Principles
- Lambda Calculus
- Higher Order Logic, natural deduction
- Term rewriting

Proof & Specification Techniques
- Inductively defined sets, rule induction
- Datatypes, recursion, induction
- Well founded recursion, Calculational reasoning
- Hoare logic, proofs about programs
- Locales, Presentation
LAST TIME

→ Sets in Isabelle
LAST TIME

→ Sets in Isabelle
→ Inductive Definitions
LAST TIME

→ Sets in Isabelle
→ Inductive Definitions
→ Rule induction
LAST TIME

- Sets in Isabelle
- Inductive Definitions
- Rule induction
- Fixpoints
Formalize the last lecture in Isabelle:

- **Define** closed

 \[f \mathcal{A} :: (\alpha \text{ set} \Rightarrow \alpha \text{ set}) \Rightarrow \alpha \text{ set} \Rightarrow \text{bool} \]

- **Show**

 \[\text{closed } f \mathcal{A} \land \text{closed } f \mathcal{B} \Rightarrow \text{closed } f (\mathcal{A} \cap \mathcal{B}) \]

 if \(f \) is monotone
 \(\text{(mono} \) is predefined)

- **Define** \(\text{lfpt } f \) as the intersection of all \(f \)-closed sets

- **Show** that \(\text{lfpt } f \) is a fixpoint of \(f \) if \(f \) is monotone

- **Show** that \(\text{lfpt } f \) is the least fixpoint of \(f \)

- **Declare** a constant \(R :: (\alpha \text{ set} \times \alpha) \text{ set} \)

- **Define** \(\hat{R} :: \alpha \text{ set} \Rightarrow \alpha \text{ set} \) in terms of \(R \)

- **Show** soundness of rule induction using \(R \) and \(\text{lfpt } \hat{R} \)
RULE INDUCTION IN ISAR
inductive $X :: \alpha \Rightarrow \text{bool}$

where

rule$_1$: ”$[X \ s; A] \Longrightarrow X \ s'$”

:

| rule$_n$: . . .
show "X x \rightarrow P x"

proof (induct rule: X.induct)
 fix s and s' assume "X s" and "A" and "P s"
 ...
 show "P s'"

next

:

qed
show "\(X \ x \implies P \ x \)"

proof (induct rule: X.induct)
 case rule\(_1\)

 \ldots

 show ?case

next

: :

next

 case rule\(_n\)

 \ldots

 show ?case

qed
assume A: "\(X \ x \)"

::

show "\(P \ x \)"

using A proof induct

::

qed
I MPLICIT SELECTION OF INDUCTION RULE

assume A: "X x"
:
show "P x"
using A proof induct
:
qed

lemma assumes A: "X x" shows "P x"
using A proof induct
:
qed
case \(\text{rule}_{i} \, x_{1} \ldots x_{k} \)

Renames first \(k \) variables in \(\text{rule}_{i} \) to \(x_{1} \ldots x_{k} \).
A REMARK ON STYLE

→ case (rule_i x y) ... show ?case
 is easy to write and maintain
A REMARK ON STYLE

→ case (rule_i x y) ... show ?case
 is easy to write and maintain

→ fix x y assume formula ... show formula'
 is easier to read:
 • all information is shown locally
 • no contextual references (e.g. ?case)
WE HAVE SEEN SO FAR ...

➔ Formalising inductive sets and rule induction
WE HAVE SEEN SO FAR...

- Formalising inductive sets and rule induction
- Rule induction in Isar
WE HAVE SEEN SO FAR ...

➔ Formalising inductive sets and rule induction
➔ Rule induction in Isar
➔ Implicit induction rule selection
WE HAVE SEEN SO FAR ...

- Formalising inductive sets and rule induction
- Rule induction in Isar
- Implicit induction rule selection
- Case abbreviations
WE HAVE SEEN SO FAR ...

- Formalising inductive sets and rule induction
- Rule induction in Isar
- Implicit induction rule selection
- Case abbreviations
- Renaming case variables