(* Title: HOL/Hoare/HoareAbort.thy Author: Leonor Prensa Nieto & Tobias Nipkow Copyright 2003 TUM Like Hoare.thy, but with an Abort statement for modelling run time errors. *) theory HoareAbort imports Main uses ("~~/src/HOL/Hoare/hoare_tac.ML") begin types 'a bexp = "'a set" 'a assn = "'a set" datatype 'a com = Basic "'a \ 'a" | Abort | Seq "'a com" "'a com" ("(_;/ _)" [61,60] 60) | Cond "'a bexp" "'a com" "'a com" ("(1IF _/ THEN _ / ELSE _/ FI)" [0,0,0] 61) | While "'a bexp" "'a assn" "'a com" ("(1WHILE _/ INV {_} //DO _ /OD)" [0,0,0] 61) abbreviation annskip ("SKIP") where "SKIP == Basic id" types 'a sem = "'a option => 'a option => bool" inductive Sem :: "'a com \ 'a sem" where "Sem (Basic f) None None" | "Sem (Basic f) (Some s) (Some (f s))" | "Sem Abort s None" | "Sem c1 s s'' \ Sem c2 s'' s' \ Sem (c1;c2) s s'" | "Sem (IF b THEN c1 ELSE c2 FI) None None" | "s \ b \ Sem c1 (Some s) s' \ Sem (IF b THEN c1 ELSE c2 FI) (Some s) s'" | "s \ b \ Sem c2 (Some s) s' \ Sem (IF b THEN c1 ELSE c2 FI) (Some s) s'" | "Sem (While b x c) None None" | "s \ b \ Sem (While b x c) (Some s) (Some s)" | "s \ b \ Sem c (Some s) s'' \ Sem (While b x c) s'' s' \ Sem (While b x c) (Some s) s'" inductive_cases [elim!]: "Sem (Basic f) s s'" "Sem (c1;c2) s s'" "Sem (IF b THEN c1 ELSE c2 FI) s s'" definition Valid :: "'a bexp \ 'a com \ 'a bexp \ bool" where "Valid p c q == \s s'. Sem c s s' \ s : Some ` p \ s' : Some ` q" (** parse translations **) syntax "_assign" :: "id => 'b => 'a com" ("(2_ :=/ _)" [70,65] 61) syntax "_hoare_abort_vars" :: "[idts, 'a assn,'a com,'a assn] => bool" ("VARS _// {_} // _ // {_}" [0,0,55,0] 50) syntax ("" output) "_hoare_abort" :: "['a assn,'a com,'a assn] => bool" ("{_} // _ // {_}" [0,55,0] 50) ML {* local fun free a = Free(a,dummyT) fun abs((a,T),body) = let val a = absfree(a, dummyT, body) in if T = Bound 0 then a else Const(Syntax.constrainAbsC,dummyT) $ a $ T end in fun mk_abstuple [x] body = abs (x, body) | mk_abstuple (x::xs) body = Syntax.const @{const_syntax split} $ abs (x, mk_abstuple xs body); fun mk_fbody a e [x as (b,_)] = if a=b then e else free b | mk_fbody a e ((b,_)::xs) = Syntax.const @{const_syntax Pair} $ (if a=b then e else free b) $ mk_fbody a e xs; fun mk_fexp a e xs = mk_abstuple xs (mk_fbody a e xs) end *} (* bexp_tr & assn_tr *) (*all meta-variables for bexp except for TRUE are translated as if they were boolean expressions*) ML{* fun bexp_tr (Const ("TRUE", _)) xs = Syntax.const "TRUE" (* FIXME !? *) | bexp_tr b xs = Syntax.const @{const_syntax Collect} $ mk_abstuple xs b; fun assn_tr r xs = Syntax.const @{const_syntax Collect} $ mk_abstuple xs r; *} (* com_tr *) ML{* fun com_tr (Const (@{syntax_const "_assign"},_) $ Free (a,_) $ e) xs = Syntax.const @{const_syntax Basic} $ mk_fexp a e xs | com_tr (Const (@{const_syntax Basic},_) $ f) xs = Syntax.const @{const_syntax Basic} $ f | com_tr (Const (@{const_syntax Seq},_) $ c1 $ c2) xs = Syntax.const @{const_syntax Seq} $ com_tr c1 xs $ com_tr c2 xs | com_tr (Const (@{const_syntax Cond},_) $ b $ c1 $ c2) xs = Syntax.const @{const_syntax Cond} $ bexp_tr b xs $ com_tr c1 xs $ com_tr c2 xs | com_tr (Const (@{const_syntax While},_) $ b $ I $ c) xs = Syntax.const @{const_syntax While} $ bexp_tr b xs $ assn_tr I xs $ com_tr c xs | com_tr t _ = t (* if t is just a Free/Var *) *} (* triple_tr *) (* FIXME does not handle "_idtdummy" *) ML{* local fun var_tr (Free (a, _)) = (a, Bound 0) (* Bound 0 = dummy term *) | var_tr (Const (@{syntax_const "_constrain"}, _) $ Free (a, _) $ T) = (a, T); fun vars_tr (Const (@{syntax_const "_idts"}, _) $ idt $ vars) = var_tr idt :: vars_tr vars | vars_tr t = [var_tr t] in fun hoare_vars_tr [vars, pre, prg, post] = let val xs = vars_tr vars in Syntax.const @{const_syntax Valid} $ assn_tr pre xs $ com_tr prg xs $ assn_tr post xs end | hoare_vars_tr ts = raise TERM ("hoare_vars_tr", ts); end *} parse_translation {* [(@{syntax_const "_hoare_abort_vars"}, hoare_vars_tr)] *} (*****************************************************************************) (*** print translations ***) ML{* fun dest_abstuple (Const (@{const_syntax split},_) $ (Abs(v,_, body))) = subst_bound (Syntax.free v, dest_abstuple body) | dest_abstuple (Abs(v,_, body)) = subst_bound (Syntax.free v, body) | dest_abstuple trm = trm; fun abs2list (Const (@{const_syntax split},_) $ (Abs(x,T,t))) = Free (x, T)::abs2list t | abs2list (Abs(x,T,t)) = [Free (x, T)] | abs2list _ = []; fun mk_ts (Const (@{const_syntax split},_) $ (Abs(x,_,t))) = mk_ts t | mk_ts (Abs(x,_,t)) = mk_ts t | mk_ts (Const (@{const_syntax Pair},_) $ a $ b) = a::(mk_ts b) | mk_ts t = [t]; fun mk_vts (Const (@{const_syntax split},_) $ (Abs(x,_,t))) = ((Syntax.free x)::(abs2list t), mk_ts t) | mk_vts (Abs(x,_,t)) = ([Syntax.free x], [t]) | mk_vts t = raise Match; fun find_ch [] i xs = (false, (Syntax.free "not_ch", Syntax.free "not_ch")) | find_ch ((v,t)::vts) i xs = if t = Bound i then find_ch vts (i-1) xs else (true, (v, subst_bounds (xs,t))); fun is_f (Const (@{const_syntax split},_) $ (Abs(x,_,t))) = true | is_f (Abs(x,_,t)) = true | is_f t = false; *} (* assn_tr' & bexp_tr'*) ML{* fun assn_tr' (Const (@{const_syntax Collect},_) $ T) = dest_abstuple T | assn_tr' (Const (@{const_syntax inter},_) $ (Const (@{const_syntax Collect},_) $ T1) $ (Const (@{const_syntax Collect},_) $ T2)) = Syntax.const @{const_syntax inter} $ dest_abstuple T1 $ dest_abstuple T2 | assn_tr' t = t; fun bexp_tr' (Const (@{const_syntax Collect},_) $ T) = dest_abstuple T | bexp_tr' t = t; *} (*com_tr' *) ML{* fun mk_assign f = let val (vs, ts) = mk_vts f; val (ch, which) = find_ch (vs~~ts) ((length vs)-1) (rev vs) in if ch then Syntax.const @{syntax_const "_assign"} $ fst which $ snd which else Syntax.const @{const_syntax annskip} end; fun com_tr' (Const (@{const_syntax Basic},_) $ f) = if is_f f then mk_assign f else Syntax.const @{const_syntax Basic} $ f | com_tr' (Const (@{const_syntax Seq},_) $ c1 $ c2) = Syntax.const @{const_syntax Seq} $ com_tr' c1 $ com_tr' c2 | com_tr' (Const (@{const_syntax Cond},_) $ b $ c1 $ c2) = Syntax.const @{const_syntax Cond} $ bexp_tr' b $ com_tr' c1 $ com_tr' c2 | com_tr' (Const (@{const_syntax While},_) $ b $ I $ c) = Syntax.const @{const_syntax While} $ bexp_tr' b $ assn_tr' I $ com_tr' c | com_tr' t = t; fun spec_tr' [p, c, q] = Syntax.const @{syntax_const "_hoare_abort"} $ assn_tr' p $ com_tr' c $ assn_tr' q *} print_translation {* [(@{const_syntax Valid}, spec_tr')] *} (*** The proof rules ***) lemma SkipRule: "p \ q \ Valid p (Basic id) q" by (auto simp:Valid_def) lemma BasicRule: "p \ {s. f s \ q} \ Valid p (Basic f) q" by (auto simp:Valid_def) lemma SeqRule: "Valid P c1 Q \ Valid Q c2 R \ Valid P (c1;c2) R" by (auto simp:Valid_def) lemma CondRule: "p \ {s. (s \ b \ s \ w) \ (s \ b \ s \ w')} \ Valid w c1 q \ Valid w' c2 q \ Valid p (Cond b c1 c2) q" by (fastsimp simp:Valid_def image_def) lemma While_aux: assumes "Sem (WHILE b INV {i} DO c OD) s s'" shows "\s s'. Sem c s s' \ s \ Some ` (I \ b) \ s' \ Some ` I \ s \ Some ` I \ s' \ Some ` (I \ -b)" using assms by (induct "WHILE b INV {i} DO c OD" s s') auto lemma WhileRule: "p \ i \ Valid (i \ b) c i \ i \ (-b) \ q \ Valid p (While b i c) q" apply(simp add:Valid_def) apply(simp (no_asm) add:image_def) apply clarify apply(drule While_aux) apply assumption apply blast apply blast done lemma AbortRule: "p \ {s. False} \ Valid p Abort q" by(auto simp:Valid_def) subsection {* Derivation of the proof rules and, most importantly, the VCG tactic *} lemma Compl_Collect: "-(Collect b) = {x. ~(b x)}" by blast use "~~/src/HOL/Hoare/hoare_tac.ML" method_setup vcg = {* Scan.succeed (fn ctxt => SIMPLE_METHOD' (hoare_tac ctxt (K all_tac))) *} "verification condition generator" method_setup vcg_simp = {* Scan.succeed (fn ctxt => SIMPLE_METHOD' (hoare_tac ctxt (asm_full_simp_tac (simpset_of ctxt)))) *} "verification condition generator plus simplification" (* Special syntax for guarded statements and guarded array updates: *) syntax "_guarded_com" :: "bool \ 'a com \ 'a com" ("(2_ \/ _)" 71) "_array_update" :: "'a list \ nat \ 'a \ 'a com" ("(2_[_] :=/ _)" [70, 65] 61) translations "P \ c" == "IF P THEN c ELSE CONST Abort FI" "a[i] := v" => "(i < CONST length a) \ (a := CONST list_update a i v)" (* reverse translation not possible because of duplicate "a" *) text{* Note: there is no special syntax for guarded array access. Thus you must write @{text"j < length a \ a[i] := a!j"}. *} end