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We will represent list objects as functions taking an argument for the cons
case, and one for the nil case, so lists will, in general, have the form

λf n. . . .

Thus, in the nil case we can just return the second argument.

nil = λf n.n

In the cons case, we need to pass the list elements to the first function, along
with something for the tail of the list

cons = λx xs.λf n.f x (xs f n)

Note that we need to pass f and n to xs.
To implement map, that is,

map f [x1, . . . , xn] = [f x1, . . . , f xn]

we note that, in the nil case, we simply want nil again. In the cons case, we
want

map f (cons x xs) = cons (fx)(map f xs)

hence
map = λfxs.xs (λx xs′.cons (fx) xs′) nil

The foldl function

foldl f i [x1, . . . , xn] = f x1 (f x2 (f x3 (. . . (f xn i))) . . .)

is rather simpler, and is left as an exercise.
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