
Lists in the λ-calculus

Simon Winwood

July 30, 2010

We will represent list objects as functions taking an argument for the cons
case, and one for the nil case, so lists will, in general, have the form

λf n. . . .

Thus, in the nil case we can just return the second argument.

nil = λf n.n

In the cons case, we need to pass the list elements to the first function, along
with something for the tail of the list

cons = λx xs.λf n.f x (xs f n)

Note that we need to pass f and n to xs.
To implement map, that is,

map f [x1, . . . , xn] = [f x1, . . . , f xn]

we note that, in the nil case, we simply want nil again. In the cons case, we
want

map f (cons x xs) = cons (fx)(map f xs)

hence
map = λfxs.xs (λx xs′.cons (fx) xs′) nil

The foldl function

foldl f i [x1, . . . , xn] = f x1 (f x2 (f x3 (. . . (f xn i))) . . .)

is rather simpler, and is left as an exercise.

1

