COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Simon Winwood, Toby Murray, June Andronick, Gerwin Klein

{P}...{Q}

Slide 1

Content

0

Intro & motivation, getting started with Isabelle

Foundations & Principles

Lambda Calculus
Higher Order Logic, natural deduction

e Term rewriting
Proof & Specification Techniques

Inductively defined sets, rule induction
Datatypes, recursion, induction

More recursion, Calculational reasoning
Hoare logic, proofs about programs
Locales, Presentation

Slide 2

Oe

NICTA

Oe

NICTA

Oe

Last Time

NICTA

Code generation

Syntax of a simple imperative language
Operational semantics

Program proof on operational semantics

Slide 3

Oe

Proofs about Programs
NICTA

Now we know:

0O What programs are: Syntax
O On what they work: State
O How they work: Semantics

So we can prove properties about programs

Example:
Show that example program from last lecture implements the factorial.

lemma (factorial, 0) — ¢/ = ¢’B = fac (c A)

(where fac0 =0, fac (Sucn)= (Sucn)*facn)

Slide 4

Too tedious
Induction needed for each loop
Is there something easier?
Slide 5
Floyd/Hoare

Idea: describe meaning of program by pre/post conditions

Examples:

{True} z:=2 {z=2}

{y=2} z:=21xy {x=42}

{x=n} IFy<OTHENz:=2+yELSExz:=x—y {z=n—|y}

{A=n} factorial {B=facn}

Proofs: have rules that directly work on such triples

Slide 6

e

NICTA

e

NICTA

e

Meaning of a Hoare-Triple
NICTA

Py ¢ {Q}
What are the assertions P and Q7?

O Here: again functions from state to bool
(shallow embedding of assertions)
O Other choice: syntax and semantics for assertions (deep embedding)

What does {P} ¢ {Q} mean?

Partial Correctness:
E{P}c{Q} = (oo .PoA{co)—oc = Qd)

Total Correctness:
E{P}c{Q} = (No.Po= 30’ (c,0) — ' NQd)

This lecture: partial correctness only (easier)

Slide 7

e

NICTA

Hoare Rules

{P} SKIP {P} {Plz—e]} x:=e¢ {P}

{Pra{R} {R}{Q}
{P} ci5¢0 {Q}

{PAb} e {Q {PA-b}er {Q}
(P} IFLTHEN ELSEc; {Q)

{PAb}c{P} PA-D=Q
{P} WHILEbDO ¢cOD {Q}

P=r {P}c{Q} @=0Q
Py ¢ {Q}

Slide 8

e

NICTA

Hoare Rules

F{P} SKIP {P} F{\o. P (o(z:=e€0))} z:=e {P}

F{Pta {R} F{R}c{Q}
F{P} ci5e2 {Q}

F{Ao.PoAbo}ci {R} F{Ao.PoA-bo}c{Q}
F{P} IFbTHEN ¢, ELSE ¢, {Q}

F{do.PoAbo}c{P} No.PoA-bo= Qo
F{P} WHILEbDOcOD {Q}

No.Po= P o F{P}c{Q} No. Qo= Qo
F{P} c {@}

Slide 9

e

NICTA

Are the Rules Correct?

Soundness: F {P} ¢ {Q} == {P} c {Q}

Proof: by rule induction on + {P} ¢ {Q}

Demo: Hoare Logic in Isabelle

Slide 10

e

NICTA

Nicer, but still kind of tedious

Hoare rule application seems boring & mechanical.
Automation?

Problem: While — need creativity to find right (invariant) P

Solution:

O annotate program with invariants
O then, Hoare rules can be applied automatically

Example:
{M=0AN =0}
WHILE M # a INV {N = M xb} DO N := N +b; M := M + 10D
{N =ax*b}

Slide 11

e

NICTA

Weakest Preconditions

pre ¢ Q = weakest P suchthat {P} c{Q}

With annotated invariants, easy to get:

pre SKIP @ = Q
pre (z :=a) Q = Mo. Q(o(z := ao))
pre (c1;c2) Q = prec (prec: Q)
pre (IF b THEN ¢; ELSE ¢;) Q = Mdo.(b—preci Qo)A
(-b — pre c2 Q o)
pre WHILEbBINVIDOcOD)Q = I
Slide 12

e Oe

Verification Conditions Records in Isabelle

NICTA NICTA
{pre ¢ Q} ¢ {Q} only true under certain conditions Records are a tuples with named components
Example:
These are called verification conditions vc ¢ Q:
ve SKIP Q - True record A= a: nat
b:int

ve(ri=a)Q = e O Selectors: a:A=-nat, b:A=int, ar =Suc0
ve (cr;e2) Q@ = Ve QA (Ve (pre e Q)) 0 Constructors: (a=Suc0, b=—1)
ve (IF b THEN ¢; ELSE ¢5) @ = VCci QAVCe Q 0 Update: r(a:=Suc0]|
ve (WHILEOINVIDOcOD)Q = (Vo.IoAbo —s precl o)A

(Vo. Io A —bo — Q o)A Records are extensible:

veel record B=A+

¢ :: nat list
vee@AlprecQ = P) = {P}c{Q} (a=Suc0, b=-1, c=[0,0])

Slide 13 Slide 15
. e Ce
Syntax Tricks Arrays
NICTA NICTA
. Depending on language, model arrays as functions:

0 x:=MXo.1 insteadof x:=1 sucks 0 A = functi lication:

0 {Xo.cxz=n} insteadof {z=n} sucksaswell rray:[ijcesf - :?C fon appication:
Problem: program variables are functions, not values O Array update = function update:
Solution: distinguish program variables syntactically alil==v = a==a(=v)
Choices:)

O declare program variables with each Hoare triple Use lists to express length:

e nice, usual syntax 0 Array access = nth:.
e works well if you state full program and only use vcg afl = ati
[0 separate program variables from Hoare triple (use extensible records), 0 Array update = list update:
indicate usage as function syntactically alil:==v = a:==afi=v]
e more syntactic overhead O Array length = list length:
e program pieces compose nicely
alength = lengtha
Slide 14 Slide 16
7

Oe

Pointers
NICTA
Choice 1
datatype ref = Refint | Null
types heap =int= val
datatype val = Intint | Bool bool | Struct_x int int bool | ...
O hp:: heap, p :: ref
O Pointer access: *p = the_Int (hp (the_addr p))
O Pointer update: *p :==v = hp == hp ((the_addr p) :=v)
O a bit klunky
O gets even worse with structs
O lots of value extraction (the_Int) in spec and program
Slide 17
. Oe
Pointers

NICTA

Choice 2 (Burstall '72, Bornat '00)

struct with next pointer and element

datatype ref = Refint | Null

types next.thp =int=ref

types elem_hp =int=int

O
O
O

next :: next_hp, elem :: elem_hp, p :: ref
Pointer access: p—next = next (the_addr p)
Pointer update: p—next:==v = next:== next ((the_addr p) :=v)

0 aseparate heap for each struct field

O

buys you p—next # p—elem automatically (aliasing)

O still assumes type safe language

Slide 18

Oe

NICTA

DEMO
Slide 19
e
We have seen today ...
NICTA
O Hoare logic rules
0 Soundness of Hoare logic
O Verification conditions
0 Example program proofs
O Arrays, pointers
Slide 20
10

