NICTA

COMP 4161 NICTA Advanced Course

Advanced Topics in Software Verification

Simon Winwood, Toby Murray, June Andronick, Gerwin Klein

Slide 1

Content

- → Intro & motivation, getting started with Isabelle
- → Foundations & Principles
 - Lambda Calculus
 - Higher Order Logic, natural deduction
 - Term rewriting
- → Proof & Specification Techniques
 - Inductively defined sets, rule induction
 - Datatypes, recursion, induction
 - More recursion, Calculational reasoning

• Hoare logic, proofs about programs

Locales, Presentation

Last Time

- → Code generation
- → Syntax of a simple imperative language
- → Operational semantics
- → Program proof on operational semantics

Slide 3

Proofs about Programs

Now we know:

- → What programs are: Syntax
- → On what they work: State
- → How they work: Semantics

So we can prove properties about programs

Example:

Show that example program from last lecture implements the factorial.

lemma (factorial, σ) $\longrightarrow \sigma' \Longrightarrow \sigma' B = fac (\sigma A)$ (where fac 0 = 0, fac (Suc n) = (Suc n) * fac n)

Slide 2

 $\begin{array}{l} \{ \mathsf{True} \} \quad x := 2 \quad \{ x = 2 \} \\ \{ y = 2 \} \quad x := 21 * y \quad \{ x = 42 \} \end{array}$

 $\{x=n\} \quad \mathsf{IF} \; y < 0 \; \mathsf{THEN} \; x := x+y \; \mathsf{ELSE} \; x := x-y \quad \{x=n-|y|\}$

 $\{A = n\}$ factorial $\{B = fac n\}$

Proofs: have rules that directly work on such triples

3

 $\frac{\{P \land b\} c_1 \{Q\} \quad \{P \land \neg b\} c_2 \{Q\}}{\{P\} \quad \mathsf{IF} \ b \ \mathsf{THEN} \ c_1 \ \mathsf{ELSE} \ c_2 \quad \{Q\}}$

 $\frac{\{P \land b\} c \{P\} \quad P \land \neg b \Longrightarrow Q}{\{P\} \quad \text{WHILE } b \text{ DO } c \text{ OD } \{Q\}}$

 $\frac{P \Longrightarrow P' \quad \{P'\} c \{Q'\} \quad Q' \Longrightarrow Q}{\{P\} \quad c \quad \{Q\}}$

NICTA

NICTA

Slide 8

4

Hoare rule application seems boring & mechanical.

Automation?

Problem: While – need creativity to find right (invariant) P

Solution:

→ annotate program with invariants

Nicer, but still kind of tedious

→ then, Hoare rules can be applied automatically

Example:

 $\{M = 0 \land N = 0\}$ WHILE $M \neq a \text{ INV } \{N = M * b\} \text{ DO } N := N + b; M := M + 1 \text{ OD } \{N = a * b\}$

Slide 11

Weakest Preconditions

pre c Q = weakest P such that $\{P\} c \{Q\}$

With annotated invariants, easy to get:

pre SKIP Q	=	Q
pre $(x := a) Q$	=	$\lambda \sigma. \; Q(\sigma(x:=a\sigma))$
pre $(c_1; c_2) Q$	=	pre c_1 (pre $c_2 Q$)
pre (IF b THEN c_1 ELSE c_2) Q	=	$\lambda \sigma. \ (b \longrightarrow \operatorname{pre} c_1 \ Q \ \sigma) \land$
		$(\neg b \longrightarrow pre \ c_2 \ Q \ \sigma)$
pre (WHILE b INV I DO c OD) Q	=	Ι

Slide 9

Slide 10

Verification Conditions

NICTA

 $\{ pre \ c \ Q \} \ c \ \{Q\}$ only true under certain conditions

These are called verification	n conditions vc $c Q$:
-------------------------------	-------------------------

vc SKIP Q	=	True
$\mathrm{vc}\;(x:=a)\;Q$	=	True
$vc\;(c_1;c_2)\;Q$	=	$vc \ c_2 \ Q \land (vc \ c_1 \ (pre \ c_2 \ Q))$
vc (IF b THEN c_1 ELSE c_2) Q	=	$vc \ c_1 \ Q \land vc \ c_2 \ Q$
vc (WHILE $b \; {\rm INV} \; I \; {\rm DO} \; c \; {\rm OD}) \; Q$	=	$(\forall \sigma. \ I\sigma \wedge b\sigma \longrightarrow pre \ c \ I \ \sigma) \wedge$
		$(\forall \sigma. \ I\sigma \land \neg b\sigma \longrightarrow Q \ \sigma) \land$
		$vc \; c \; I$

 $\mathsf{vc}\; c\; Q \wedge (\mathsf{pre}\; c\; Q \Longrightarrow P) \Longrightarrow \{P\}\; c\; \{Q\}$

Slide 13

	0.
Syntax Tricks	
	NICIA

→ $x := \lambda \sigma$. 1 instead of x := 1 sucks

→ $\{\lambda\sigma. \sigma x = n\}$ instead of $\{x = n\}$ sucks as well

Problem: program variables are functions, not values

Solution: distinguish program variables syntactically

Choices:

- → declare program variables with each Hoare triple
 - nice, usual syntax
 - works well if you state full program and only use vcg
- → separate program variables from Hoare triple (use extensible records), indicate usage as function syntactically
 - more syntactic overhead
 - program pieces compose nicely

Slide 14

Records in Isabelle

NICTA

Records are a tuples with named components

Example:

		record A =	a :: nat b :: int
→ Selectors:	$a::A\Rightarrow nat,$	$b::A\Rightarrow int,$	$a \ r = Suc \ 0$
→ Constructo	rs: (a = Suc	0, b = -1	
→ Update:	r(a := Suc 0)		

Records are extensible:

record B = A + c :: nat list

(| a = Suc 0, b = -1, c = [0, 0] |)

Slide 15

Arrays

Depending on language, model arrays as functions:

→ Array access = function application:

a[i] = a i

→ Array update = function update: a[i] :== v = a :== a(i:= v)

Use lists to express length:

→ Array access = nth: a[i] = a ! i

- → Array update = list update: a[i] :== v = a :== a[i:= v]
- → Array length = list length: a.length = length a

5.1.4			
Pointers			NICTA
Choice 1			
datatype	ref	= Ref int Null	
types	heap	= int \Rightarrow val	
datatype	val	= Int int Bool bool Struct_x int int bool	
	ccess: *	f p = the_Int (hp (the_addr p)) p :== v = hp :== hp ((the_addr p) := v)	

- → a bit klunky
- → gets even worse with structs
- → lots of value extraction (the_Int) in spec and program

Slide 17

Pointers	0•
Fointers	NICTA
	шент

Choice 2 (Burstall '72, Bornat '00)

struct with next pointer and element

datatype ref = Ref int | Null

- types $next_hp = int \Rightarrow ref$
- elem_hp = int \Rightarrow int types
- → next :: next_hp, elem :: elem_hp, p :: ref
- → Pointer access: p→next = next (the_addr p)
- → Pointer update: p→next :== v = next :== next ((the_addr p) := v)
- → a separate heap for each struct field
- → buys you p→next \neq p→elem automatically (aliasing)
- → still assumes type safe language

NICTA

Dемо

Slide 19

We have seen today ...

- → Hoare logic rules
- → Soundness of Hoare logic
- → Verification conditions
- → Example program proofs
- → Arrays, pointers

Slide 18