NICTA

COMP 4161 NICTA Advanced Course

Advanced Topics in Software Verification

Simon Winwood, Toby Murray, June Andronick, Gerwin Klein

 $J \rightarrow$

Slide 1

List Homework	-
	NICTA

- → List objects (terms)
- → Constructors: cons, nil
- → map (that is, map $f [x_1, ..., x_n] = [f x_1, ..., f x_n]$)
- → foldl (that is, foldl $f i [x_1, \ldots, x_n] = f x_1 (f x_2 (f x_3 (\ldots (f x_n i))) \ldots))$

So, what can you do with λ calculus?

 λ calculus is very expressive, you can encode:

- → logic, set theory
- → turing machines, functional programs, etc.

Examples:

true $\equiv \lambda x y. x$	if true $x \ y \longrightarrow^*_{\beta} x$
$\texttt{false} \equiv \lambda x \; y. \; y$	$\texttt{iffalse} \; x \; y \longrightarrow^*_\beta y$
if $\equiv \lambda z \ x \ y. \ z \ x \ y$	

Now, not, and, or, etc is easy:

not $\equiv \lambda x$. if x false true and $\equiv \lambda x y$. if x y false or $\equiv \lambda x y$. if x true y

Slide 3

More Examples Encoding natural numbers (Church Numerals)

 $0 \equiv \lambda f x. x$ $1 \equiv \lambda f x. f x$ $2 \equiv \lambda f x. f (f x)$ $3 \equiv \lambda f x. f (f (f x))$

Numeral n takes arguments f and x, applies f n-times to x.

 $iszero \equiv \lambda n. n (\lambda x. false) true$ succ $\equiv \lambda n f x. f (n f x)$ add $\equiv \lambda m n. \lambda f x. m f (n f x)$

Slide 2

Fix Points

NICTA

$$\begin{split} & (\lambda x \ f. \ f \ (x \ x \ f)) \ (\lambda x \ f. \ f \ (x \ x \ f)) \ t \longrightarrow_{\beta} \\ & (\lambda f. \ f \ ((\lambda x \ f. \ f \ (x \ x \ f)) \ (\lambda x \ f. \ f \ (x \ x \ f)) \ f)) \ t \longrightarrow_{\beta} \\ & t \ ((\lambda x \ f. \ f \ (x \ x \ f)) \ (\lambda x \ f. \ f \ (x \ x \ f)) \ t) \end{split}$$

$$\begin{split} \mu &= (\lambda x f. \ f \ (x \ x \ f)) \ (\lambda x f. \ f \ (x \ x \ f)) \\ \mu \ t \longrightarrow_{\beta} t \ (\mu \ t) \longrightarrow_{\beta} t \ (t \ (\mu \ t))) \longrightarrow_{\beta} t \ (t \ (\mu \ t))) \longrightarrow_{\beta} \ldots \end{split}$$

 $(\lambda x f. f (x x f)) (\lambda x f. f (x x f))$ is Turing's fix point operator

We have learned so far ...

- → λ calculus syntax
- → free variables, substitution
- → β reduction
- → α and η conversion
- $\rightarrow \beta$ reduction is confluent
- \rightarrow λ calculus is very expressive (turing complete)
- \Rightarrow λ calculus is inconsistent

Slide 5 Slide 7 Nice, but ... λ calculus is inconsistent NICTA NICTA As a mathematical foundation, λ does not work. It is inconsistent. Can find term R such that $R R =_{\beta} \operatorname{not}(R R)$ → Frege (Predicate Logic, ~ 1879): allows arbitrary quantification over predicates → **Russel** (1901): Paradox $R \equiv \{X | X \notin X\}$ There are more terms that do not make sense: → Whitehead & Russel (Principia Mathematica, 1910-1913): 12, true false, etc. Fix the problem → Church (1930): λ calculus as logic, true, false, \wedge , ... as λ terms Solution: rule out ill-formed terms by using types. $\{x \mid P \mid x\} \equiv \lambda x. P \mid x \qquad x \in M \equiv M \mid x$ with (Church 1940) Problem: you can write $R \equiv \lambda x$. not (x x)and get $(R R) =_{\beta} \operatorname{not} (R R)$

Slide 6

Examples	NICTA	Example Type Derivation:	
$\Gamma \vdash (\lambda x. \ x) :: \alpha \Rightarrow \alpha$			
$[y \leftarrow \texttt{int}] \vdash y :: \texttt{int}$			
$[z \leftarrow \texttt{bool}] \vdash (\lambda y. \ y) \ z :: \texttt{bool}$			
$[] \vdash \lambda f \ x. \ f \ x :: (\alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta$ A term <i>t</i> is w	ell typed or type correct	$\frac{\overline{[x \leftarrow \alpha, y \leftarrow \beta] \vdash x :: \alpha}}{\overline{[x \leftarrow \alpha] \vdash \lambda y. x :: \beta \Rightarrow \alpha}}$ $\overline{[] \vdash \lambda x y. x :: \alpha \Rightarrow \beta \Rightarrow \alpha}$	
	Slide 13	Slide 15	
Type Checking Rules	Slide 13	Slide 15 More complex Example	O • ICTA
_ Type Checking Rules Variables:	Slide 13 $\overline{\Gamma \vdash x :: \Gamma(x)}$	Slide 15 More complex Example N $\overline{\Gamma \vdash f :: \alpha \Rightarrow (\alpha \Rightarrow \beta)} \overline{\Gamma \vdash x :: \alpha}$	O • ICTA
Type Checking Rules Variables: Application:	Slide 13 $\hline \qquad \qquad$	Slide 15 More complex Example N $\overline{\Gamma \vdash f :: \alpha \Rightarrow (\alpha \Rightarrow \beta)}$ $\overline{\Gamma \vdash x :: \alpha}$ $\overline{\Gamma \vdash f x :: \alpha \Rightarrow \beta}$ $\overline{\Gamma \vdash f x :: \alpha}$ $\overline{\Gamma \vdash f x :: \alpha \Rightarrow \beta}$ $\overline{\Gamma \vdash f x :: \alpha}$ $\overline{\Gamma \vdash f x :: \alpha \Rightarrow \beta}$ $\overline{\Gamma \vdash f x :: \alpha \Rightarrow \beta}$ $[f \leftarrow \alpha \Rightarrow \alpha \Rightarrow \beta] \vdash \lambda x. f x :: \alpha \Rightarrow \beta$ $[] \vdash \lambda f x. f x :: (\alpha \Rightarrow \alpha \Rightarrow \beta) \Rightarrow \alpha \Rightarrow \beta$	O O ICTA

Slide 14

What does this mean for Expressiveness?

Not all computable functions can be expressed in λ^{\rightarrow} !

How can typed functional languages then be turing complete?

Fact:

Each computable function can be encoded as closed, type correct λ^{\rightarrow} term using $Y :: (\tau \Rightarrow \tau) \Rightarrow \tau$ with $Y t \longrightarrow_{\beta} t (Y t)$ as only constant.

- → Y is called fix point operator
- → used for recursion
- → lose decidability (what does $Y(\lambda x.x)$ reduce to?)