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List Homework

➜ List objects (terms)

➜ Constructors: cons, nil

➜ map (that is, map f [x1, . . . , xn] = [f x1, . . . , f xn])

➜ foldl (that is, foldl f i [x1, . . . , xn] = f x1 (f x2 (f x3 (. . . (f xn i))) . . .))
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So, what can you do with λ calculus?

λ calculus is very expressive, you can encode:

➜ logic, set theory

➜ turing machines, functional programs, etc.

Examples:

true ≡ λx y. x if true x y −→∗

β x

false ≡ λx y. y if false x y −→∗

β y

if ≡ λz x y. z x y

Now, not, and, or, etc is easy:

not ≡ λx. if x false true
and ≡ λx y. if x y false
or ≡ λx y. if x true y
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More Examples

Encoding natural numbers (Church Numerals)

0 ≡ λf x. x

1 ≡ λf x. f x

2 ≡ λf x. f (f x)

3 ≡ λf x. f (f (f x))

. . .

Numeral n takes arguments f and x, applies f n-times to x.

iszero ≡ λn. n (λx. false) true

succ ≡ λn f x. f (n f x)

add ≡ λm n. λf x. m f (n f x)

Slide 4

2



Fix Points

(λx f. f (x x f)) (λx f. f (x x f)) t −→β

(λf. f ((λx f. f (x x f)) (λx f. f (x x f)) f)) t −→β

t ((λx f. f (x x f)) (λx f. f (x x f)) t)

µ = (λxf. f (x x f)) (λxf. f (x x f))

µ t −→β t (µ t) −→β t (t (µ t)) −→β t (t (t (µ t))) −→β . . .

(λxf. f (x x f)) (λxf. f (x x f)) is Turing’s fix point operator
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Nice, but ...

As a mathematical foundation, λ does not work. It is inconsistent.

➜ Frege (Predicate Logic, ∼ 1879):

allows arbitrary quantification over predicates

➜ Russel (1901): Paradox R ≡ {X|X /∈ X}

➜ Whitehead & Russel (Principia Mathematica, 1910-1913):

Fix the problem

➜ Church (1930): λ calculus as logic, true, false, ∧, . . . as λ terms

Problem:

with {x| P x} ≡ λx. P x x ∈M ≡M x

you can write R ≡ λx. not (x x)

and get (R R) =β not (R R)
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We have learned so far...

➜ λ calculus syntax

➜ free variables, substitution

➜ β reduction

➜ α and η conversion

➜ β reduction is confluent

➜ λ calculus is very expressive (turing complete)

➜ λ calculus is inconsistent
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λ calculus is inconsistent

Can find term R such that R R =β not(R R)

There are more terms that do not make sense:
1 2, true false, etc.

Solution : rule out ill-formed terms by using types.
(Church 1940)
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Introducing types

Idea: assign a type to each “sensible” λ term.

Examples:

➜ for term t has type α write t :: α

➜ if x has type α then λx. x is a function from α to α

Write: (λx. x) :: α ⇒ a

➜ for s t to be sensible:

s must be function

t must be right type for parameter

If s :: α ⇒ β and t :: α then (s t) :: β
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THAT ’S ABOUT IT
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NOW FORMALLY AGAIN
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Syntax for λ→

Terms: t ::= v | c | (t t) | (λx. t)
v, x ∈ V, c ∈ C, V, C sets of names

Types: τ ::= b | ν | τ ⇒ τ

b ∈ {bool,int, . . .} base types
ν ∈ {α, β, . . .} type variables

α⇒ β ⇒ γ = α⇒ (β ⇒ γ)

Context Γ:

Γ: function from variable and constant names to types.

Term t has type τ in context Γ: Γ ⊢ t :: τ
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Examples

Γ ⊢ (λx. x) :: α⇒ α

[y ← int] ⊢ y :: int

[z ← bool] ⊢ (λy. y) z :: bool

[] ⊢ λf x. f x :: (α⇒ β)⇒ α⇒ β

A term t is well typed or type correct
if there are Γ and τ such that Γ ⊢ t :: τ
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Type Checking Rules

Variables: Γ ⊢ x :: Γ(x)

Application:
Γ ⊢ t1 :: τ2 ⇒ τ1 Γ ⊢ t2 :: τ2

Γ ⊢ (t1 t2) :: τ1

Abstraction:
Γ[x← τ1] ⊢ t :: τ2

Γ ⊢ (λx. t) :: τ1 ⇒ τ2
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Example Type Derivation:

[x← α, y ← β] ⊢ x :: α

[x← α] ⊢ λy. x :: β ⇒ α

[] ⊢ λx y. x :: α⇒ β ⇒ α
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More complex Example

Γ ⊢ f :: α⇒ (α⇒ β) Γ ⊢ x :: α

Γ ⊢ f x :: α⇒ β Γ ⊢ x :: α

Γ ⊢ f x x :: β

[f ← α⇒ α⇒ β] ⊢ λx. f x x :: α⇒ β

[] ⊢ λf x. f x x :: (α⇒ α⇒ β)⇒ α⇒ β

Γ = [f ← α⇒ α⇒ β, x← α]
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More general Types

A term can have more than one type.

Example: [] ⊢ λx. x :: bool⇒ bool

[] ⊢ λx. x :: α⇒ α

Some types are more general than others:

τ . σ if there is a substitution S such that τ = S(σ)

Examples:

int⇒ bool . α⇒ β . β ⇒ α 6. α⇒ α
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Most general Types

Fact: each type correct term has a most general type

Formally:
Γ ⊢ t :: τ =⇒ ∃σ. Γ ⊢ t :: σ ∧ (∀σ′. Γ ⊢ t :: σ′ =⇒ σ′ . σ)

It can be found by executing the typing rules backwards.

➜ type checking: checking if Γ ⊢ t :: τ for given Γ and τ

➜ type inference: computing Γ and τ such that Γ ⊢ t :: τ

Type checking and type inference on λ→ are decidable.
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What about β reduction?

Definition of β reduction stays the same.

Fact: Well typed terms stay well typed during β reduction

Formally: Γ ⊢ s :: τ ∧ s −→β t =⇒ Γ ⊢ t :: τ

This property is called subject reduction
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What about termination?

β reduction in λ→ always terminates.

(Alan Turing, 1942)

➜ =β is decidable
To decide if s =β t, reduce s and t to normal form (always exists, because −→β

terminates), and compare result.

➜ =αβη is decidable
This is why Isabelle can automatically reduce each term to βη normal form.
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What does this mean for Expressiveness?

Not all computable functions can be expressed in λ→!

How can typed functional languages then be turing complete?

Fact:
Each computable function can be encoded as closed, type correct λ→ term
using Y :: (τ ⇒ τ )⇒ τ with Y t −→β t (Y t) as only constant.

➜ Y is called fix point operator

➜ used for recursion

➜ lose decidability (what does Y (λx.x) reduce to?)
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