Oe

NICTA

COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Simon Winwood, Toby Murray, June Andronick, Gerwin Klein
Slide 1

Oe

List Homework

NICTA

O List objects (terms)

O Constructors: cons, nil

0 map (thatis, map f [z1,...,@n] = [f @1,..., [zn])

0O foldl (thatis, foldl f i [z1,...,2n] = f o1 (f 22 (f 23 (.. (f 20 ©)))...))

Slide 2

So, what can you do with) calculus?

A calculus is very expressive, you
O logic, set theory

can encode:

O turing machines, functional programs, etc.

Examples:
true =Xzy.z
false=Xzy. y
if =X\zzy. zay
Now, not , and, or, etc is easy:

not =\z.if zfal setrue
and=XMzy.if zyfal se
or =Xxy.if ztruey

More Examples

iftruezy —j5x

iffalsery —jy

Slide 3

Encoding natural numbers (Church Numerals)

0 =AMz o

1 =Mz fo

2 =M f(fa)

3 =Ma [(f(fo)

Numeral n takes arguments f and x, applies f n-times to z.

iszero=An.n (\z.fal se)true

succ =Mfa f(nfx)

add =dmn Afz.mf(nfx)

Slide 4

Oe

NICTA

Oe

NICTA

e Oe

Fix Points We have learned so far...
NICTA NICTA

Mo ff@ah) Oaff@af) t—p
W (Qaff) Oaff@af)) t—s
t (Ol f@e D) Qe ff @)D

A calculus syntax

free variables, substitution

A reduction

« and n conversion

B reduction is confluent

A calculus is very expressive (turing complete)
A calculus is inconsistent

w=Qzf f (@ f) Aaf | (zzf))
pt—rpt(pt) —pt(t(pt) —ptEE @) —s. ..

OOooooodg

Azf. f(zax) (M\af. f (xx f))is Turing’s fix point operator

Slide 5 Slide 7

e Oe

Nice, but ... A calculus is inconsistent
NICTA NICTA
As a mathematical foundation, A does not work. It is inconsistent. Can find term R such that R R =3 not (R R)
O Frege (Predicate Logic, ~ 1879):
allows arbitrary quantification over predicates
O Russel (1901): Paradox R = {X|X ¢ X} There are more terms that do not make sense:
0 Whitehead & Russel (Principia Mathematica, 1910-1913): 12, truefalse, etc
Fix the problem
O Church (1930): A calculus as logic, t rue, f al se, A, ... as A terms

Solution : rule out ill-formed terms by using types.

with {z|Pz} =X z. Pz reEM=Mz (Church 1940)
Problem: you canwrite R = Az.not (z x)
and get (R R)=gnot (RR)
Slide 6 Slide 8

Qe Oe

Introducin es
g typ NICTA NICTA

Idea: assign a type to each “sensible” A term.

Examples:
0 for termthastype a write ¢:: «
O if z has type a then Az.z is a function from « to «
Write: (A\z.z) ta=a
O for st tobe sensible: NOW FORMALLY AGAIN
s must be function
t must be right type for parameter

Ifs:a=pBandt:athen(st):f

Slide 9 Slide 11

Qe Oe

Syntax for A\~
NICTA NICTA

Terms: ¢ == v | ¢ | (¢tt) | (Ax.©)
v,z €V, ceC, V,C setsofnames

Types: 7 == b |v |7 =7
b € {bool ,int,...} base types
v € {a,B,...} type variables
THAT'S ABOUT IT
a=f=y = a= (=7

Context I':
T': function from variable and constant names to types.

Term t has type 7 in context I': Thtor

Slide 10 Slide 12

Qe

Examples
NICTA

THMz. z)ta=a
ly«int]Fy:int
[z + bool | - (A\y. y) z :: bool

JEXAfaz. fzu(a=0)=a=p

Aterm ¢ is well typed or type correct
ifthere areI"and 7 such thatT' - ¢ :: 7

Slide 13

Qe

Type Checking Rules
e q NICTA

Variables: Thaz:l(z)

I'ttyim=mn Tktyaumn
Th(tta)m

Application:

Tz nlFten

Abstraction: _
THEMXz.t):m =1

Slide 14

Qe

Example Type Derivation:

NICTA

[z a,y+Blhr:a
T—alFAyz:f=>a
JF Xy zia=B=a

Slide 15

Qe

More complex Example

NICTA

THfra=(a=p8) Trz:a
T'tfzia=p T'tz:a
T'tfax:p
f+a=a=plFXe. faza=f
JFXMa feos(a=>a=p)=a=p

'=[f+<a=a=p,z+q]

Slide 16

Oe

More general Types
g Y NICTA

A term can have more than one type.

Example: [+ Az. 2z :: bool = bool

IFXz.z:a=a

Some types are more general than others:

7 <o ifthereis a substitution S such that 7 = S(0)

Examples:

int =bool < a=8 < B=a £ a=a

~

Slide 17

Oe

Most general Types
g ye NICTA

Fact: each type correct term has a most general type

Formally:
F'tter = 3Jo.TktuoANo . Thtuo =0 So)

It can be found by executing the typing rules backwards.

O type checking: checkingif I' ¢ :: 7 for given I and 7
O type inference: computing I"and 7 suchthatT" - ¢ :: 7

Type checking and type inference on A~ are decidable.

Slide 18

Oe

What about 3 reduction?

NICTA

Definition of 3 reduction stays the same.

Fact: Well typed terms stay well typed during 5 reduction
Formally: ThEsuT ANs—pgt=TFtur

This property is called subject reduction

Slide 19

Oe

What about termination?
NICTA

[reduction in A\ always terminates.

(Alan Turing, 1942)

0 =g is decidable
To decide if s = ¢, reduce s and ¢ to normal form (always exists, because — 3

terminates), and compare result.
0 =apy, is decidable
This is why Isabelle can automatically reduce each term to n normal form.

Slide 20

10

e

What does this mean for Expressiveness?
NICTA

Not all computable functions can be expressed in A7l
How can typed functional languages then be turing complete?
Fact:
Each computable function can be encoded as closed, type correct A term
usingY :: (t = 7) = 7withY t — ¢t (Y t) as only constant.
0 Y is called fix point operator

O used for recursion
O lose decidability (what does Y (Az.z) reduce to?)

Slide 21

11

