
COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Simon Winwood, Toby Murray, June Andronick, Gerwin Klein

λ→

Slide 1

List Homework

➜ List objects (terms)

➜ Constructors: cons, nil

➜ map (that is, map f [x1, . . . , xn] = [f x1, . . . , f xn])

➜ foldl (that is, foldl f i [x1, . . . , xn] = f x1 (f x2 (f x3 (. . . (f xn i))) . . .))

Slide 2

1

So, what can you do with λ calculus?

λ calculus is very expressive, you can encode:

➜ logic, set theory

➜ turing machines, functional programs, etc.

Examples:

true ≡ λx y. x if true x y −→∗

β x

false ≡ λx y. y if false x y −→∗

β y

if ≡ λz x y. z x y

Now, not, and, or, etc is easy:

not ≡ λx. if x false true
and ≡ λx y. if x y false
or ≡ λx y. if x true y

Slide 3

More Examples

Encoding natural numbers (Church Numerals)

0 ≡ λf x. x

1 ≡ λf x. f x

2 ≡ λf x. f (f x)

3 ≡ λf x. f (f (f x))

. . .

Numeral n takes arguments f and x, applies f n-times to x.

iszero ≡ λn. n (λx. false) true

succ ≡ λn f x. f (n f x)

add ≡ λm n. λf x. m f (n f x)

Slide 4

2



Fix Points

(λx f. f (x x f)) (λx f. f (x x f)) t −→β

(λf. f ((λx f. f (x x f)) (λx f. f (x x f)) f)) t −→β

t ((λx f. f (x x f)) (λx f. f (x x f)) t)

µ = (λxf. f (x x f)) (λxf. f (x x f))

µ t −→β t (µ t) −→β t (t (µ t)) −→β t (t (t (µ t))) −→β . . .

(λxf. f (x x f)) (λxf. f (x x f)) is Turing’s fix point operator

Slide 5

Nice, but ...

As a mathematical foundation, λ does not work. It is inconsistent.

➜ Frege (Predicate Logic, ∼ 1879):

allows arbitrary quantification over predicates

➜ Russel (1901): Paradox R ≡ {X|X /∈ X}

➜ Whitehead & Russel (Principia Mathematica, 1910-1913):

Fix the problem

➜ Church (1930): λ calculus as logic, true, false, ∧, . . . as λ terms

Problem:

with {x| P x} ≡ λx. P x x ∈M ≡M x

you can write R ≡ λx. not (x x)

and get (R R) =β not (R R)

Slide 6

3

We have learned so far...

➜ λ calculus syntax

➜ free variables, substitution

➜ β reduction

➜ α and η conversion

➜ β reduction is confluent

➜ λ calculus is very expressive (turing complete)

➜ λ calculus is inconsistent

Slide 7

λ calculus is inconsistent

Can find term R such that R R =β not(R R)

There are more terms that do not make sense:
1 2, true false, etc.

Solution : rule out ill-formed terms by using types.
(Church 1940)

Slide 8

4



Introducing types

Idea: assign a type to each “sensible” λ term.

Examples:

➜ for term t has type α write t :: α

➜ if x has type α then λx. x is a function from α to α

Write: (λx. x) :: α ⇒ a

➜ for s t to be sensible:

s must be function

t must be right type for parameter

If s :: α ⇒ β and t :: α then (s t) :: β

Slide 9

THAT ’S ABOUT IT

Slide 10

5

NOW FORMALLY AGAIN

Slide 11

Syntax for λ→

Terms: t ::= v | c | (t t) | (λx. t)
v, x ∈ V, c ∈ C, V, C sets of names

Types: τ ::= b | ν | τ ⇒ τ

b ∈ {bool,int, . . .} base types
ν ∈ {α, β, . . .} type variables

α⇒ β ⇒ γ = α⇒ (β ⇒ γ)

Context Γ:

Γ: function from variable and constant names to types.

Term t has type τ in context Γ: Γ ⊢ t :: τ

Slide 12

6



Examples

Γ ⊢ (λx. x) :: α⇒ α

[y ← int] ⊢ y :: int

[z ← bool] ⊢ (λy. y) z :: bool

[] ⊢ λf x. f x :: (α⇒ β)⇒ α⇒ β

A term t is well typed or type correct
if there are Γ and τ such that Γ ⊢ t :: τ

Slide 13

Type Checking Rules

Variables: Γ ⊢ x :: Γ(x)

Application:
Γ ⊢ t1 :: τ2 ⇒ τ1 Γ ⊢ t2 :: τ2

Γ ⊢ (t1 t2) :: τ1

Abstraction:
Γ[x← τ1] ⊢ t :: τ2

Γ ⊢ (λx. t) :: τ1 ⇒ τ2

Slide 14

7

Example Type Derivation:

[x← α, y ← β] ⊢ x :: α

[x← α] ⊢ λy. x :: β ⇒ α

[] ⊢ λx y. x :: α⇒ β ⇒ α

Slide 15

More complex Example

Γ ⊢ f :: α⇒ (α⇒ β) Γ ⊢ x :: α

Γ ⊢ f x :: α⇒ β Γ ⊢ x :: α

Γ ⊢ f x x :: β

[f ← α⇒ α⇒ β] ⊢ λx. f x x :: α⇒ β

[] ⊢ λf x. f x x :: (α⇒ α⇒ β)⇒ α⇒ β

Γ = [f ← α⇒ α⇒ β, x← α]

Slide 16

8



More general Types

A term can have more than one type.

Example: [] ⊢ λx. x :: bool⇒ bool

[] ⊢ λx. x :: α⇒ α

Some types are more general than others:

τ . σ if there is a substitution S such that τ = S(σ)

Examples:

int⇒ bool . α⇒ β . β ⇒ α 6. α⇒ α

Slide 17

Most general Types

Fact: each type correct term has a most general type

Formally:
Γ ⊢ t :: τ =⇒ ∃σ. Γ ⊢ t :: σ ∧ (∀σ′. Γ ⊢ t :: σ′ =⇒ σ′ . σ)

It can be found by executing the typing rules backwards.

➜ type checking: checking if Γ ⊢ t :: τ for given Γ and τ

➜ type inference: computing Γ and τ such that Γ ⊢ t :: τ

Type checking and type inference on λ→ are decidable.

Slide 18

9

What about β reduction?

Definition of β reduction stays the same.

Fact: Well typed terms stay well typed during β reduction

Formally: Γ ⊢ s :: τ ∧ s −→β t =⇒ Γ ⊢ t :: τ

This property is called subject reduction

Slide 19

What about termination?

β reduction in λ→ always terminates.

(Alan Turing, 1942)

➜ =β is decidable
To decide if s =β t, reduce s and t to normal form (always exists, because −→β

terminates), and compare result.

➜ =αβη is decidable
This is why Isabelle can automatically reduce each term to βη normal form.

Slide 20

10



What does this mean for Expressiveness?

Not all computable functions can be expressed in λ→!

How can typed functional languages then be turing complete?

Fact:
Each computable function can be encoded as closed, type correct λ→ term
using Y :: (τ ⇒ τ )⇒ τ with Y t −→β t (Y t) as only constant.

➜ Y is called fix point operator

➜ used for recursion

➜ lose decidability (what does Y (λx.x) reduce to?)

Slide 21

11


