COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Simon Winwood, Toby Murray, June Andronick, Gerwin Klein

Types: $\tau::=\mathrm{b}|' \nu| ' \nu:: C|\tau \Rightarrow \tau|(\tau, \ldots, \tau) K$
$\mathrm{b} \in\{$ bool, int, $\ldots\}$ base types
$\nu \in\{\alpha, \beta, \ldots\}$ type variables
$K \in\{$ set, list, $\ldots\}$ type constructors
$C \in\{$ order, linord,...$\}$ type classes
Terms: $t::=v|c| ? v|(t t)|(\lambda x . t)$
$v, x \in V, \quad c \in C, \quad V, C$ sets of names

Types and Terms in Isabelle

Types: $\tau::=\mathrm{b}\left|{ }^{\prime} \nu\right|$ ' $\nu:: C|\tau \Rightarrow \tau|(\tau, \ldots, \tau) K$
$\mathrm{b} \in\{$ bool, int, $\ldots\}$ base types
$\nu \in\{\alpha, \beta, \ldots\}$ type variables
$K \in\{$ set, list,..$\}$ type constructors
$C \in\{$ order, linord, ...\} type classes

Terms: $t::=v|c| ? v|(t t)|(\lambda x . t)$ $v, x \in V, \quad c \in C, \quad V, C$ sets of names
\rightarrow type constructors: construct a new type out of a parameter type.
Example: int list

Types and Terms in Isabelle

Types: $\tau::=\mathrm{b}\left|{ }^{\prime} \nu\right|$ ' $\nu:: C|\tau \Rightarrow \tau|(\tau, \ldots, \tau) K$
$\mathrm{b} \in\{$ bool, int, $\ldots\}$ base types
$\nu \in\{\alpha, \beta, \ldots\}$ type variables
$K \in\{$ set, list,..$\}$ type constructors
$C \in\{$ order, linord, $\ldots\}$ type classes

Terms: $t::=v|c| ? v|(t t)|(\lambda x . t)$

$$
v, x \in V, \quad c \in C, \quad V, C \text { sets of names }
$$

\rightarrow type constructors: construct a new type out of a parameter type.
Example: int list
\rightarrow type classes: restrict type variables to a class defined by axioms.
Example: α :: order

Types and Terms in Isabelle

Types: $\tau::=\mathrm{b} \mid$ ' $\nu|' \nu:: C| \tau \Rightarrow \tau \mid(\tau, \ldots, \tau) K$
$\mathrm{b} \in\{$ bool, int, $\ldots\}$ base types
$\nu \in\{\alpha, \beta, \ldots\}$ type variables
$K \in\{$ set, list,..$\}$ type constructors
$C \in\{$ order, linord, $\ldots\}$ type classes

Terms: $t::=v|c| ? v|(t t)|(\lambda x . t)$

$$
v, x \in V, \quad c \in C, \quad V, C \text { sets of names }
$$

\rightarrow type constructors: construct a new type out of a parameter type.
Example: int list
\rightarrow type classes: restrict type variables to a class defined by axioms.
Example: α :: order
\rightarrow schematic variables: variables that can be instantiated.
\rightarrow similar to Haskell's type classes, but with semantic properties
axclass order < ord
order_refl: " $x \leq x$ "
order_trans: " $\llbracket x \leq y ; y \leq z \rrbracket \Longrightarrow x \leq z "$

Type Classes

\rightarrow similar to Haskell's type classes, but with semantic properties
axclass order < ord

$$
\begin{aligned}
& \text { order_refl: " } x \leq x " \\
& \text { order_trans: " } \llbracket x \leq y ; y \leq z \rrbracket \Longrightarrow x \leq z "
\end{aligned}
$$

\rightarrow theorems can be proved in the abstract lemma order_less_trans: " $\bigwedge x:::^{\prime} a::$ order. $\llbracket x<y ; y<z \rrbracket \Longrightarrow x<z "$

Type Classes

\rightarrow similar to Haskell's type classes, but with semantic properties
axclass order < ord

$$
\begin{aligned}
& \text { order_refl: " } x \leq x " \\
& \text { order_trans: "【x } " y ; y \leq z \rrbracket \Longrightarrow x \leq z "
\end{aligned}
$$

\rightarrow theorems can be proved in the abstract lemma order_less_trans: " $\wedge x$::'a :: order. $\llbracket x<y ; y<z \rrbracket \Longrightarrow x<z "$
\rightarrow can be used for subtyping
axclass linorder < order
linorder_linear: " $x \leq y \vee y \leq x "$

Type Classes

\rightarrow similar to Haskell's type classes, but with semantic properties
axclass order < ord

$$
\begin{aligned}
& \text { order_refl: " } x \leq x " \\
& \text { order_trans: "【x } " y ; y \leq z \rrbracket \Longrightarrow x \leq z "
\end{aligned}
$$

\rightarrow theorems can be proved in the abstract lemma order_less_trans: " $\wedge x$::'a :: order. $\llbracket x<y ; y<z \rrbracket \Longrightarrow x<z "$
\rightarrow can be used for subtyping
axclass linorder < order
linorder_linear: " $x \leq y \vee y \leq x "$
\rightarrow can be instantiated
instance nat :: " $\{$ order, linorder\}" by ...

Schematic Variables

$$
\frac{X \quad Y}{X \wedge Y}
$$

$\rightarrow X$ and Y must be instantiated to apply the rule

Schematic Variables

$$
\frac{X \quad Y}{X \wedge Y}
$$

$\rightarrow X$ and Y must be instantiated to apply the rule

$$
\text { But: } \quad \text { lemma " } x+0=0+x \text { " }
$$

$\rightarrow x$ is free
\rightarrow convention: lemma must be true for all x
\rightarrow during the proof, x must not be instantiated

Schematic Variables

$$
\frac{X \quad Y}{X \wedge Y}
$$

$\rightarrow X$ and Y must be instantiated to apply the rule

$$
\text { But: } \quad \text { lemma " } x+0=0+x \text { " }
$$

$\rightarrow x$ is free
\rightarrow convention: lemma must be true for all x
\rightarrow during the proof, x must not be instantiated

Solution:

Isabelle has free (x), bound (x), and schematic (?X) variables.
Only schematic variables can be instantiated.
Free converted into schematic after proof is finished.

Higher Order Unification

Unification:

Find substitution σ on variables for terms s, t such that $\sigma(s)=\sigma(t)$

Higher Order Unification

Unification:

Find substitution σ on variables for terms s, t such that $\sigma(s)=\sigma(t)$

In Isabelle:

Find substitution σ on schematic variables such that $\sigma(s)={ }_{\alpha \beta \eta} \sigma(t)$

Higher Order Unification

Unification:

Find substitution σ on variables for terms s, t such that $\sigma(s)=\sigma(t)$

In Isabelle:

Find substitution σ on schematic variables such that $\sigma(s)={ }_{\alpha \beta \eta} \sigma(t)$

Examples:

$$
\begin{array}{lll}
? X \wedge ? Y & =_{\alpha \beta \eta} & x \wedge x \\
? P x & ={ }_{\alpha \beta \eta} & x \wedge x \\
P(? f x) & =_{\alpha \beta \eta} & ? Y x
\end{array}
$$

Higher Order Unification

Unification:

Find substitution σ on variables for terms s, t such that $\sigma(s)=\sigma(t)$

In Isabelle:

Find substitution σ on schematic variables such that $\sigma(s)={ }_{\alpha \beta \eta} \sigma(t)$

Examples:

$$
\begin{array}{llll}
? X \wedge ? Y & =_{\alpha \beta \eta} & x \wedge x & \\
? P X \leftarrow x, ? Y \leftarrow x] \\
P(? f x) & ={ }_{\alpha \beta \eta} & x \wedge x & \\
=_{\alpha \beta} & ? Y x & & {[? P \leftarrow \lambda x \cdot x \wedge x]} \\
P(? x \cdot x, ? Y \leftarrow P]
\end{array}
$$

Higher Order: schematic variables can be functions.

Higher Order Unification

\rightarrow Unification modulo $\alpha \beta$ (Higher Order Unification) is semi-decidable

Higher Order Unification

\rightarrow Unification modulo $\alpha \beta$ (Higher Order Unification) is semi-decidable
\rightarrow Unification modulo $\alpha \beta \eta$ is undecidable

Higher Order Unification

\rightarrow Unification modulo $\alpha \beta$ (Higher Order Unification) is semi-decidable
\rightarrow Unification modulo $\alpha \beta \eta$ is undecidable
\rightarrow Higher Order Unification has possibly infinitely many solutions

Higher Order Unification

\rightarrow Unification modulo $\alpha \beta$ (Higher Order Unification) is semi-decidable
\rightarrow Unification modulo $\alpha \beta \eta$ is undecidable
\rightarrow Higher Order Unification has possibly infinitely many solutions

But:

\rightarrow Most cases are well-behaved

Higher Order Unification

\rightarrow Unification modulo $\alpha \beta$ (Higher Order Unification) is semi-decidable
\rightarrow Unification modulo $\alpha \beta \eta$ is undecidable
\rightarrow Higher Order Unification has possibly infinitely many solutions

But:

\rightarrow Most cases are well-behaved
\rightarrow Important fragments (like Higher Order Patterns) are decidable

Higher Order Unification

\rightarrow Unification modulo $\alpha \beta$ (Higher Order Unification) is semi-decidable
\rightarrow Unification modulo $\alpha \beta \eta$ is undecidable
\rightarrow Higher Order Unification has possibly infinitely many solutions

But:

\rightarrow Most cases are well-behaved
\rightarrow Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:

\rightarrow is a term in β normal form where
\rightarrow each occurrence of a schematic variable is of the from ?f $t_{1} \ldots t_{n}$
\rightarrow and the $t_{1} \ldots t_{n}$ are η-convertible into n distinct bound variables

We have learned so far...

\rightarrow Simply typed lambda calculus: $\lambda \rightarrow$

We have learned so far...

\rightarrow Simply typed lambda calculus: $\lambda \rightarrow$
\rightarrow Typing rules for $\lambda \rightarrow$, type variables, type contexts

We have learned so far...

\rightarrow Simply typed lambda calculus: $\lambda \rightarrow$
\rightarrow Typing rules for λ^{\rightarrow}, type variables, type contexts
$\rightarrow \beta$-reduction in λ^{\rightarrow} satisfies subject reduction

We have learned so far...

\rightarrow Simply typed lambda calculus: $\lambda \rightarrow$
\rightarrow Typing rules for λ^{\rightarrow}, type variables, type contexts
$\rightarrow \beta$-reduction in λ^{\rightarrow} satisfies subject reduction
$\rightarrow \beta$-reduction in λ^{\rightarrow} always terminates

We have learned so far...

\rightarrow Simply typed lambda calculus: λ^{\rightarrow}
\rightarrow Typing rules for λ^{\rightarrow}, type variables, type contexts
$\rightarrow \beta$-reduction in λ^{\rightarrow} satisfies subject reduction
$\rightarrow \beta$-reduction in λ^{\rightarrow} always terminates
\rightarrow Types and terms in Isabelle

Preview: Proofs in Isabelle

Proofs in Isabelle

General schema:

lemma name: "<goal>"
apply $<$ method $>$
apply $<$ method $>$

done

Proofs in Isabelle

General schema:

```
lemma name: "<goal>"
apply <method>
apply <method>
```

done
\rightarrow Sequential application of methods until all subgoals are solved.

1. $\wedge x_{1} \ldots x_{p} . \llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow B$
2. $\wedge y_{1} \ldots y_{q} \cdot \llbracket C_{1} ; \ldots ; C_{m} \rrbracket \Longrightarrow D$

The Proof State

1. $\wedge x_{1} \ldots x_{p} . \llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow B$
2. $\wedge y_{1} \ldots y_{q} \cdot \llbracket C_{1} ; \ldots ; C_{m} \rrbracket \Longrightarrow D$
$x_{1} \ldots x_{p} \quad$ Parameters
$A_{1} \ldots A_{n} \quad$ Local assumptions
$B \quad$ Actual (sub)goal

Isabelle Theories

Syntax:

theory MyTh
imports $\operatorname{Imp}^{\text {im }} h_{1} \ldots \operatorname{Imp} T h_{n}$
begin
(declarations, definitions, theorems, proofs, ...)*
end
\rightarrow MyTh: name of theory. Must live in file MyTh.thy
$\rightarrow I m p T h_{i}$: name of imported theories. Import transitive.

Isabelle Theories

Syntax:

theory MyTh
imports $\operatorname{Imp}^{\text {im }} h_{1} \ldots \operatorname{Imp} T h_{n}$
begin
(declarations, definitions, theorems, proofs, ...)*
end
\rightarrow MyTh: name of theory. Must live in file MyTh.thy
$\rightarrow \operatorname{Imp} T h_{i}$: name of imported theories. Import transitive.

Unless you need something special:
theory MyTh imports Main begin ... end

For each connective (\wedge, \vee, etc): introduction and elemination rules

For each connective (\wedge, \vee, etc): introduction and elemination rules
$\frac{A \quad B}{A \wedge B}$ conjl
$\overline{A \vee B} \overline{A \vee B} \operatorname{disjl1/2}$
$\overline{A \longrightarrow B} \mathrm{impl}$

$$
\frac{A \wedge B \llbracket A ; B \rrbracket \Longrightarrow C}{C} \text { conjE }
$$

$$
\frac{A \vee B}{C} \operatorname{disjE}
$$

For each connective (\wedge, \vee, etc): introduction and elemination rules

$$
\begin{array}{ll}
\frac{A \quad B}{A \wedge B} \text { conjl } & \frac{A \wedge B \llbracket A ; B \rrbracket \Longrightarrow C}{C} \text { conjE } \\
\frac{A}{A \vee B} \frac{B}{A \vee B} \text { disjl1/2 } & \frac{A \vee B}{C} \text { disjE } \\
\frac{A \longrightarrow B}{A \longrightarrow} \mathrm{impl} & \frac{A \longrightarrow B}{C}
\end{array}
$$

For each connective (\wedge, \vee, etc): introduction and elemination rules

$$
\begin{array}{ll}
\frac{A \quad B}{A \wedge B} \text { conjl } & \frac{A \wedge B \llbracket A ; B \rrbracket \Longrightarrow C}{C} \text { conjE } \\
\frac{A}{A \vee B} \frac{B}{A \vee B} \text { disjl1/2 } & \frac{A \vee B \quad A \Longrightarrow C \quad B \Longrightarrow C}{C} \text { disjE } \\
\frac{A \longrightarrow B}{A \longrightarrow} \mathrm{impl} & \frac{A \longrightarrow B}{C}
\end{array}
$$

For each connective (\wedge, \vee, etc): introduction and elemination rules

$$
\begin{array}{ll}
\frac{A \quad B}{A \wedge B} \text { conjl } & \frac{A \wedge B \llbracket A ; B \rrbracket \Longrightarrow C}{C} \text { conjE } \\
\frac{A}{A \vee B} \frac{B}{A \vee B} \text { disjl1/2 } & \frac{A \vee B \quad A \Longrightarrow C \quad B \Longrightarrow C}{C} \text { disjE } \\
\frac{A \Longrightarrow B}{A \longrightarrow B} \text { impl } & \frac{A \longrightarrow B}{C}
\end{array}
$$

For each connective (\wedge, \vee, etc): introduction and elemination rules

$$
\begin{array}{ll}
\frac{A \quad B}{A \wedge B} \text { conjl } & \frac{A \wedge B \llbracket A ; B \rrbracket \Longrightarrow C}{C} \text { conjE } \\
\frac{A}{A \vee B} \frac{B}{A \vee B} \text { disjl1/2 } & \frac{A \vee B \quad A \Longrightarrow C \quad B \Longrightarrow C}{C} \text { disjE } \\
\frac{A \Longrightarrow B}{A \longrightarrow B} \text { impl } & \frac{A \longrightarrow B \quad A \quad B \Longrightarrow C}{C} \text { impE }
\end{array}
$$

For each connective (\wedge, \vee, etc): introduction and elemination rules

Proof by assumption

apply assumption

proves

1. $\llbracket B_{1} ; \ldots ; B_{m} \rrbracket \Longrightarrow C$
by unifying C with one of the B_{i}

Proof by assumption

apply assumption

proves

1. $\llbracket B_{1} ; \ldots ; B_{m} \rrbracket \Longrightarrow C$
by unifying C with one of the B_{i}

There may be more than one matching B_{i} and multiple unifiers.
Backtracking!
Explicit backtracking command: back

Intro rules

Intro rules decompose formulae to the right of \Longrightarrow. apply (rule $<$ intro-rule $>$)

Intro rules

Intro rules decompose formulae to the right of \Longrightarrow.
apply (rule $<$ intro-rule $>$)

Intro rule $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A$ means
\rightarrow To prove A it suffices to show $A_{1} \ldots A_{n}$

Intro rules

Intro rules decompose formulae to the right of \Longrightarrow.
apply (rule $<$ intro-rule $>$)

Intro rule $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A$ means
\rightarrow To prove A it suffices to show $A_{1} \ldots A_{n}$

Applying rule $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A$ to subgoal C :
\rightarrow unify A and C
\rightarrow replace C with n new subgoals $A_{1} \ldots A_{n}$

Elim rules

Elim rules decompose formulae on the left of \Longrightarrow. apply (erule <elim-rule $>$)

Elim rules

Elim rules decompose formulae on the left of \Longrightarrow. apply (erule <elim-rule $>$)

Elim rule $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A$ means
\rightarrow If I know A_{1} and want to prove A it suffices to show $A_{2} \ldots A_{n}$

Elim rules

Elim rules decompose formulae on the left of \Longrightarrow.

apply (erule $<$ elim-rule $>$)

Elim rule $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A$ means
\rightarrow If I know A_{1} and want to prove A it suffices to show $A_{2} \ldots A_{n}$

Applying rule $\llbracket A_{1} ; \ldots ; A_{n} \rrbracket \Longrightarrow A$ to subgoal C :
Like rule but also
\rightarrow unifies first premise of rule with an assumption
\rightarrow eliminates that assumption

Demo

More Proof Rules

Iff, Negation, True and False

\[

\]

Iff, Negation, True and False

$$
\begin{array}{ll}
\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A=B} \text { iffl } & A=B \\
\text { iffE } \\
\frac{A=B}{} \text { iffD1 } & \frac{A=B}{} \text { iffD2 } \\
\frac{\neg A}{\square} \text { notl } & \frac{\neg A}{P} \text { notE }
\end{array}
$$

Iff, Negation, True and False

$$
\begin{array}{cc}
\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A=B} \text { iffl } & \frac{A=B}{} \llbracket A \longrightarrow B ; B \longrightarrow A \rrbracket \Longrightarrow C \\
\text { iffE } \\
\frac{A=B}{} \text { iffD1 } & \frac{A=B}{} \text { iffD2 } \\
\frac{\neg A}{} \text { notl } & \frac{\neg A}{P} \text { notE }
\end{array}
$$

Iff, Negation, True and False

$$
\begin{array}{cc}
\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A=B} \text { iffl } & \frac{A=B}{} \llbracket A \longrightarrow B ; B \longrightarrow A \rrbracket \Longrightarrow C \\
\text { iffE } \\
\frac{A=B}{A \Longrightarrow B} \text { iffD1 } & \frac{A=B}{B \Longrightarrow A} \text { iffD2 } \\
\frac{\neg A}{} \text { notl } & \frac{\neg A}{P} \text { notE }
\end{array}
$$

Iff, Negation, True and False

$$
\begin{array}{cc}
\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A=B} \text { iffl } & \frac{A=B}{} \llbracket A \longrightarrow B ; B \longrightarrow A \rrbracket \Longrightarrow C \\
\text { iffE } \\
\frac{A=B}{A \Longrightarrow B} \text { iffD1 } & \frac{A=B}{B \Longrightarrow A} \text { iffD2 } \\
\frac{A \Longrightarrow \text { False }}{\neg A} \text { notl } & \frac{\neg A}{P} \text { notE }
\end{array}
$$

Iff, Negation, True and False

$$
\begin{array}{cc}
\begin{array}{cc}
A \Longrightarrow B \quad B \Longrightarrow A \\
A=B \\
\text { iffl } & A=B \\
\\
\frac{A=B}{A \Longrightarrow B} \text { iffD1 } & C \\
\frac{A=B \longrightarrow A \rrbracket}{B \Longrightarrow A} \text { iffD2 } \\
\frac{A \Longrightarrow \text { False }}{\neg A} \text { notl } & \frac{\neg A A}{P} \text { notE }
\end{array}
\end{array}
$$

Iff, Negation, True and False

$$
\begin{array}{cc}
\begin{array}{cc}
A \Longrightarrow B \quad B \Longrightarrow A \\
A=B & \text { iffl }
\end{array} & A=B \\
\\
\frac{A=B}{A \Longrightarrow B} \text { iffD1 } & \frac{A=B ; B \longrightarrow A \rrbracket}{B \Longrightarrow A} \text { iffD2 } \\
\frac{A \text { iffE }}{\square \Longrightarrow F a l s e} \\
\neg A \\
\text { notl } & \frac{\neg A A}{P} \text { notE } \\
\frac{\text { True }}{} \text { Truel } & \frac{\text { False }}{P} \text { FalseE }
\end{array}
$$

Equality

$$
\overline{t=t} \operatorname{refl} \quad \frac{s=t}{t=s} \text { sym } \quad \frac{r=s \quad s=t}{r=t} \text { trans }
$$

Equality

$$
\overline{t=t} \operatorname{refl} \quad \frac{s=t}{t=s} \text { sym } \quad \frac{r=s \quad s=t}{r=t} \text { trans }
$$

$$
\frac{s=t \quad P s}{P t} \text { subst }
$$

Equality

$$
\begin{aligned}
& \overline{t=t} \text { refl } \quad \frac{s=t}{t=s} \text { sym } \quad \frac{r=s \quad s=t}{r=t} \text { trans } \\
& \frac{s=t P s}{P t} \text { subst }
\end{aligned}
$$

Rarely needed explicitly — used implicitly by term rewriting

Classical

$$
\overline{P=\text { True } \vee P=\text { False }} \text { True-False }
$$

Classical

$$
\begin{gathered}
\overline{P=\text { True } \vee P=\text { False }} \text { True-False } \\
\frac{\overline{P \vee \neg P} \text { excluded-middle }}{} \\
\frac{\neg A \Longrightarrow \text { False }}{A} \text { ccontr } \frac{\neg A \Longrightarrow A}{A} \text { classical }
\end{gathered}
$$

Classical

$$
\begin{gathered}
\overline{P=\text { True } \vee P=\text { False }} \text { True-False } \\
\frac{\overline{P \vee \neg P} \text { excluded-middle }}{} \\
\frac{\neg A \Longrightarrow \text { False }}{A} \text { ccontr } \frac{\neg A \Longrightarrow A}{A} \text { classical }
\end{gathered}
$$

\rightarrow excluded-middle, ccontr and classical not derivable from the other rules.

Classical

$$
\begin{gathered}
\overline{P=\text { True } \vee P=\text { False }} \text { True-False } \\
\frac{\overline{P \vee \neg P} \text { excluded-middle }}{} \\
\frac{\neg A \Longrightarrow \text { False }}{A} \text { ccontr } \frac{\neg A \Longrightarrow A}{A} \text { classical }
\end{gathered}
$$

\rightarrow excluded-middle, ccontr and classical not derivable from the other rules.
\rightarrow if we include True-False, they are derivable
They make the logic "classical", "non-constructive"

Cases

$\overline{P \vee \neg P}$ excluded-middle

is a case distinction on type bool

Cases

$\overline{P \vee \neg P}$ excluded-middle

is a case distinction on type bool

Isabelle can do case distinctions on arbitrary terms: apply (case_tac term)

Safe and not so safe

Safe rules preserve provability

Safe and not so safe

Safe rules preserve provability
conjl, impl, notl, iffi, refl, ccontr, classical, conjE, disjE

$$
\frac{A \quad B}{A \wedge B} \text { conjl }
$$

Safe and not so safe

Safe rules preserve provability
conjl, impl, notl, iffi, refl, ccontr, classical, conjE, disjE

$$
\frac{A \quad B}{A \wedge B} \text { conjl }
$$

Unsafe rules can turn a provable goal into an unprovable one

Safe and not so safe

Safe rules preserve provability conjl, impl, notl, iffi, refl, ccontr, classical, conjE, disjE

$$
\frac{A \quad B}{A \wedge B} \text { conjl }
$$

Unsafe rules can turn a provable goal into an unprovable one
disjl1, disjl2, impE, iffD1, iffD2, notE

$$
\frac{A}{A \vee B} \text { disjl1 }
$$

Safe and not so safe

Safe rules preserve provability conjl, impl, notl, iffi, refl, ccontr, classical, conjE, disjE

$$
\frac{A \quad B}{A \wedge B} \text { conjl }
$$

Unsafe rules can turn a provable goal into an unprovable one
disjl1, disjl2, impE, iffD1, iffD2, notE

$$
\frac{A}{A \vee B} \text { disjl1 }
$$

Apply safe rules before unsafe ones

