

COMP 4161 NICTA Advanced Course

Advanced Topics in Software Verification

Simon Winwood, Toby Murray, June Andronick, Gerwin Klein

and HOL

Types: $\tau ::= b \mid '\nu \mid '\nu :: C \mid \tau \Rightarrow \tau \mid (\tau, ..., \tau) K$ $b \in \{bool, int, ...\}$ base types $\nu \in \{\alpha, \beta, ...\}$ type variables $K \in \{set, list, ...\}$ type constructors $C \in \{order, linord, ...\}$ type classes

- → type constructors: construct a new type out of a parameter type.
 Example: int list

Types: $\tau ::= b \mid '\nu \mid '\nu :: C \mid \tau \Rightarrow \tau \mid (\tau, ..., \tau) K$ $b \in \{bool, int, ...\}$ base types $\nu \in \{\alpha, \beta, ...\}$ type variables $K \in \{set, list, ...\}$ type constructors $C \in \{order, linord, ...\}$ type classes

- **Terms:** $t ::= v | c | ?v | (t t) | (\lambda x. t)$ $v, x \in V, c \in C, V, C$ sets of names
- → type constructors: construct a new type out of a parameter type.
 Example: int list
- type classes: restrict type variables to a class defined by axioms.
 Example: α :: order

Types: $\tau ::= b \mid '\nu \mid '\nu :: C \mid \tau \Rightarrow \tau \mid (\tau, ..., \tau) K$ $b \in \{bool, int, ...\}$ base types $\nu \in \{\alpha, \beta, ...\}$ type variables $K \in \{set, list, ...\}$ type constructors $C \in \{order, linord, ...\}$ type classes

- **Terms:** $t ::= v | c | ?v | (t t) | (\lambda x. t)$ $v, x \in V, c \in C, V, C$ sets of names
- → type constructors: construct a new type out of a parameter type.
 Example: int list
- type classes: restrict type variables to a class defined by axioms.
 Example: α :: order
- → schematic variables: variables that can be instantiated.

→ similar to Haskell's type classes, but with semantic properties
 axclass order < ord
 order_refl: "x ≤ x"
 order_trans: "[x ≤ y; y ≤ z]] ⇒ x ≤ z"
 ...

→ similar to Haskell's type classes, but with semantic properties
 axclass order < ord
 order_refl: "x ≤ x"
 order_trans: "[x ≤ y; y ≤ z]] ⇒ x ≤ z"
 ...

 \rightarrow theorems can be proved in the abstract

 $\textbf{lemma order_less_trans: "} \land x :::'a :: order. [[x < y; y < z]] \Longrightarrow x < z"$

→ similar to Haskell's type classes, but with semantic properties
 axclass order < ord
 order_refl: "x ≤ x"
 order_trans: "[x ≤ y; y ≤ z]] ⇒ x ≤ z"
 ...

- → theorems can be proved in the abstract
 lemma order_less_trans: " ∧ x ::'a :: order. [[x < y; y < z]] ⇒ x < z"
- \rightarrow can be used for subtyping

```
axclass linorder < order
```

linorder_linear: " $x \le y \lor y \le x$ "

→ similar to Haskell's type classes, but with semantic properties
 axclass order < ord
 order_refl: "x ≤ x"
 order_trans: "[x ≤ y; y ≤ z]] ⇒ x ≤ z"
 ...

➔ theorems can be proved in the abstract

 $\textbf{lemma order_less_trans: "} \land x :::'a :: order. [[x < y; y < z]] \Longrightarrow x < z"$

 \rightarrow can be used for subtyping

```
axclass linorder < order
```

```
linorder_linear: "x \le y \lor y \le x"
```

 \rightarrow can be instantiated

```
instance nat :: "{order, linorder}" by ...
```

Schematic Variables

 \rightarrow X and Y must be **instantiated** to apply the rule

 \rightarrow X and Y must be **instantiated** to apply the rule

But: lemma "x + 0 = 0 + x"

- $\rightarrow x$ is free
- \clubsuit convention: lemma must be true for all x
- \rightarrow during the proof, x must not be instantiated

 \rightarrow X and Y must be **instantiated** to apply the rule

But: lemma "x + 0 = 0 + x"

- $\rightarrow x$ is free
- \rightarrow convention: lemma must be true for all x
- \rightarrow during the proof, x must not be instantiated

Solution:

Isabelle has free (x), bound (x), and schematic (?X) variables.

Only schematic variables can be instantiated.

Free converted into schematic after proof is finished.

Find substitution σ on variables for terms s, t such that $\sigma(s) = \sigma(t)$

Find substitution σ on variables for terms s, t such that $\sigma(s) = \sigma(t)$

In Isabelle:

Find substitution σ on schematic variables such that $\sigma(s) =_{\alpha\beta\eta} \sigma(t)$

Find substitution σ on variables for terms s, t such that $\sigma(s) = \sigma(t)$

In Isabelle:

Find substitution σ on schematic variables such that $\sigma(s) =_{\alpha\beta\eta} \sigma(t)$

Examples:

 $\begin{array}{ll} ?X \wedge ?Y &=_{\alpha\beta\eta} & x \wedge x \\ ?P \ x &=_{\alpha\beta\eta} & x \wedge x \\ P \ (?f \ x) &=_{\alpha\beta\eta} & ?Y \ x \end{array}$

Find substitution σ on variables for terms s, t such that $\sigma(s) = \sigma(t)$

In Isabelle:

Find substitution σ on schematic variables such that $\sigma(s) =_{\alpha\beta\eta} \sigma(t)$

Examples:

$$\begin{array}{ll} ?X \wedge ?Y &=_{\alpha\beta\eta} & x \wedge x & [?X \leftarrow x, ?Y \leftarrow x] \\ ?P x &=_{\alpha\beta\eta} & x \wedge x & [?P \leftarrow \lambda x. \ x \wedge x] \\ P (?f x) &=_{\alpha\beta\eta} & ?Y x & [?f \leftarrow \lambda x. \ x, ?Y \leftarrow P] \end{array}$$

Higher Order: schematic variables can be functions.

→ Unification modulo $\alpha\beta$ (Higher Order Unification) is semi-decidable

- → Unification modulo $\alpha\beta$ (Higher Order Unification) is semi-decidable
- → Unification modulo $\alpha\beta\eta$ is undecidable

- → Unification modulo $\alpha\beta$ (Higher Order Unification) is semi-decidable
- → Unification modulo $\alpha\beta\eta$ is undecidable
- → Higher Order Unification has possibly infinitely many solutions

- → Unification modulo $\alpha\beta$ (Higher Order Unification) is semi-decidable
- → Unification modulo $\alpha\beta\eta$ is undecidable
- → Higher Order Unification has possibly infinitely many solutions

But:

→ Most cases are well-behaved

- → Unification modulo $\alpha\beta$ (Higher Order Unification) is semi-decidable
- → Unification modulo $\alpha\beta\eta$ is undecidable
- → Higher Order Unification has possibly infinitely many solutions

But:

- ➔ Most cases are well-behaved
- → Important fragments (like Higher Order Patterns) are decidable

- → Unification modulo $\alpha\beta$ (Higher Order Unification) is semi-decidable
- → Unification modulo $\alpha\beta\eta$ is undecidable
- → Higher Order Unification has possibly infinitely many solutions

But:

- → Most cases are well-behaved
- → Important fragments (like Higher Order Patterns) are decidable

Higher Order Pattern:

- \rightarrow is a term in β normal form where
- \rightarrow each occurrence of a schematic variable is of the from $?f t_1 \ldots t_n$
- → and the $t_1 \ldots t_n$ are η -convertible into n distinct bound variables

→ Simply typed lambda calculus: λ^{\rightarrow}

- → Simply typed lambda calculus: λ^{\rightarrow}
- → Typing rules for λ^{\rightarrow} , type variables, type contexts

- → Simply typed lambda calculus: λ^{\rightarrow}
- → Typing rules for λ^{\rightarrow} , type variables, type contexts
- → β -reduction in λ^{\rightarrow} satisfies subject reduction

- → Simply typed lambda calculus: λ^{\rightarrow}
- → Typing rules for λ^{\rightarrow} , type variables, type contexts
- → β -reduction in λ^{\rightarrow} satisfies subject reduction
- → β -reduction in λ^{\rightarrow} always terminates

- → Simply typed lambda calculus: λ^{\rightarrow}
- → Typing rules for λ^{\rightarrow} , type variables, type contexts
- → β -reduction in λ^{\rightarrow} satisfies subject reduction
- → β -reduction in λ^{\rightarrow} always terminates
- ➔ Types and terms in Isabelle

PREVIEW: PROOFS IN ISABELLE

General schema:

lemma name: "<goal>"
apply <method>
apply <method>

done

• • •

General schema:

lemma name: "<goal>"
apply <method>
apply <method>

done

. . .

→ Sequential application of methods until all subgoals are solved.

The Proof State

1.
$$\bigwedge x_1 \dots x_p . \llbracket A_1; \dots; A_n \rrbracket \Longrightarrow B$$

2. $\bigwedge y_1 \dots y_q . \llbracket C_1; \dots; C_m \rrbracket \Longrightarrow D$

The Proof State

1.
$$\bigwedge x_1 \dots x_p . \llbracket A_1; \dots; A_n \rrbracket \Longrightarrow B$$

2. $\bigwedge y_1 \dots y_q . \llbracket C_1; \dots; C_m \rrbracket \Longrightarrow D$

- $x_1 \dots x_p$ Parameters $A_1 \dots A_n$ Local assumptions
- *B* Actual (sub)goal

Syntax:

theory MyTh

```
\texttt{imports}\; \mathit{ImpTh}_1 \ldots \mathit{ImpTh}_n
```

begin

```
(declarations, definitions, theorems, proofs, ...)* end
```

- → MyTh: name of theory. Must live in file MyTh. thy
- → $ImpTh_i$: name of *imported* theories. Import transitive.

Syntax:

theory MyTh

 $\texttt{imports}\; \mathit{Imp}\, \mathit{Th}_1 \ldots \mathit{Imp}\, \mathit{Th}_n$

begin

(declarations, definitions, theorems, proofs, ...)* end

- → MyTh: name of theory. Must live in file MyTh. thy
- → $ImpTh_i$: name of *imported* theories. Import transitive.

Unless you need something special:

theory MyTh imports Main begin ... end

For each connective (\land , \lor , etc): **introduction** and **elemination** rules

For each connective (\land , \lor , etc): **introduction** and **elemination** rules

apply assumption

proves

1. $\llbracket B_1; \ldots; B_m \rrbracket \Longrightarrow C$

by unifying C with one of the B_i

apply assumption

proves

1. $\llbracket B_1; \ldots; B_m \rrbracket \Longrightarrow C$

by unifying C with one of the B_i

There may be more than one matching B_i and multiple unifiers.

Backtracking!

Explicit backtracking command: back

Intro rules

Intro rules decompose formulae to the right of \implies .

apply (rule <intro-rule>)

Intro rules

Intro rules decompose formulae to the right of \implies .

apply (rule <intro-rule>)

Intro rule $\llbracket A_1; \ldots; A_n \rrbracket \Longrightarrow A$ means

→ To prove A it suffices to show $A_1 \ldots A_n$

Intro rules

Intro rules decompose formulae to the right of \implies .

apply (rule <intro-rule>)

Intro rule $\llbracket A_1; \ldots; A_n \rrbracket \Longrightarrow A$ means

→ To prove A it suffices to show $A_1 \ldots A_n$

Applying rule $\llbracket A_1; \ldots; A_n \rrbracket \Longrightarrow A$ to subgoal C:

- \rightarrow unify A and C
- → replace *C* with *n* new subgoals $A_1 \ldots A_n$

Elim rules

Elim rules decompose formulae on the left of \implies .

apply (erule <elim-rule>)

Elim rules decompose formulae on the left of \Longrightarrow .

apply (erule <elim-rule>)

Elim rule $\llbracket A_1; \ldots; A_n \rrbracket \Longrightarrow A$ means

→ If I know A_1 and want to prove A it suffices to show $A_2 \ldots A_n$

Elim rules decompose formulae on the left of \Longrightarrow .

apply (erule <elim-rule>)

Elim rule $\llbracket A_1; \ldots; A_n \rrbracket \Longrightarrow A$ means

→ If I know A_1 and want to prove A it suffices to show $A_2 \ldots A_n$

Applying rule $[\![A_1; \ldots; A_n]\!] \Longrightarrow A$ to subgoal *C*: Like **rule** but also

- → unifies first premise of rule with an assumption
- \rightarrow eliminates that assumption

Dемо

MORE PROOF RULES

Iff, Negation, True and False

 \bigcirc

NICTA

Iff, Negation, True and False

$$\frac{A \Longrightarrow B \xrightarrow{B} A}{A = B} \text{ iffI} \qquad \frac{A = B}{C} \text{ iffE}$$

$$\frac{A = B}{I} \text{ iffD1} \qquad \frac{A = B}{I} \text{ iffD2}$$

$$\frac{-A = B}{P} \text{ notE}$$

NICTA

18-a

$$\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A = B} \quad \text{iffI} \quad \frac{A = B \quad [\![A \longrightarrow B; B \longrightarrow A]\!] \Longrightarrow C}{C} \quad \text{iffE}$$

$$\underline{A = B} \quad \text{iffD1} \quad \underline{A = B} \quad \text{iffD2}$$

$$----- notl$$

 $\frac{\neg A}{P}$ notE

$$\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A = B} \quad \text{iffI} \qquad \frac{A = B \quad [\![A \longrightarrow B; B \longrightarrow A]\!] \Longrightarrow C}{C} \quad \text{iffE}$$

$$\frac{A=B}{A\Longrightarrow B} \text{ iffD1}$$

$$\frac{A=B}{B\Longrightarrow A} \text{ iffD2}$$

$$----- notl$$

$$\frac{\neg A}{P}$$
 notE

$$\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A = B} \text{ iffl } \frac{A = B \quad [\![A \longrightarrow B; B \longrightarrow A]\!] \Longrightarrow C}{C} \text{ iffE}$$

$$\frac{A=B}{A\Longrightarrow B} \text{ iffD1}$$

$$\frac{A=B}{B\Longrightarrow A} \text{ iffD2}$$

$$\frac{A \Longrightarrow False}{\neg A}$$
 not

$$\frac{\neg A}{P}$$
 notE

$$\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A = B} \text{ iffl } \frac{A = B \quad [\![A \longrightarrow B; B \longrightarrow A]\!] \Longrightarrow C}{C} \text{ iffE}$$

$$\frac{A=B}{A\Longrightarrow B} \text{ iffD1}$$

$$\frac{A=B}{B\Longrightarrow A} \text{ iffD2}$$

$$\frac{A \Longrightarrow False}{\neg A} \text{ not}$$

$$\frac{\neg A \quad A}{P}$$
 notE

$$\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A = B} \text{ iffl } \frac{A = B \quad [\![A \longrightarrow B; B \longrightarrow A]\!] \Longrightarrow C}{C} \text{ iffE}$$

$$\frac{A=B}{A\Longrightarrow B} \text{ iffD1}$$

$$\frac{A=B}{B\Longrightarrow A} \text{ iffD2}$$

$$\frac{A \Longrightarrow False}{\neg A} \text{ not}$$

$$\frac{\neg A \quad A}{P}$$
 notE

$$\frac{\textit{False}}{P}$$
 FalseE

Equality

$$\frac{t=t}{t=t}$$
 refl $\frac{s=t}{t=s}$ sym $\frac{r=s \ s=t}{r=t}$ trans

Equality

$$\frac{1}{t=t}$$
 refl $\frac{s=t}{t=s}$ sym $\frac{r=s \quad s=t}{r=t}$ trans

$$\frac{s=t \quad P \ s}{P \ t} \text{ subst}$$

Equality

$$\frac{t}{t=t}$$
 refl $\frac{s=t}{t=s}$ sym $\frac{r=s \quad s=t}{r=t}$ trans

$$\frac{s=t \quad P \ s}{P \ t} \text{ subst}$$

Rarely needed explicitly — used implicitly by term rewriting

Classical

$$\overline{P = True \lor P = False}$$
 True-False

Classical

$$\overline{P = True \lor P = False}$$
 True-False

$$\overline{P \lor \neg P}$$
 excluded-middle

$$\frac{\neg A \Longrightarrow False}{A} \text{ ccontr } \frac{\neg A \Longrightarrow A}{A} \text{ classical}$$

$$\overline{P = True \lor P = False}$$
 True-False

$$\overline{P \lor \neg P}$$
 excluded-middle

$$\frac{\neg A \Longrightarrow False}{A}$$
 ccontr $\frac{\neg A \Longrightarrow A}{A}$ classical

→ excluded-middle, ccontr and classical not derivable from the other rules.

$$\overline{P = True \lor P = False}$$
 True-False

$$\overline{P \lor \neg P}$$
 excluded-middle

$$\frac{\neg A \Longrightarrow False}{A}$$
 ccontr $\frac{\neg A \Longrightarrow A}{A}$ classical

- → excluded-middle, ccontr and classical not derivable from the other rules.
- → if we include True-False, they are derivable

They make the logic "classical", "non-constructive"

 $\overline{P \lor \neg P}$ excluded-middle

is a case distinction on type bool

 $\overline{P \lor \neg P}$ excluded-middle

is a case distinction on type bool

Isabelle can do case distinctions on arbitrary terms:

apply (case_tac term)

Safe and not so safe

Safe rules preserve provability

Safe and not so safe

Safe rules preserve provability

conjl, impl, notl, iffi, refl, ccontr, classical, conjE, disjE

$$\frac{A \quad B}{A \wedge B}$$
 conjl

Safe rules preserve provability

conjl, impl, notl, iffi, refl, ccontr, classical, conjE, disjE

$$\frac{A \quad B}{A \wedge B}$$
 conjl

Unsafe rules can turn a provable goal into an unprovable one

Safe rules preserve provability

conjl, impl, notl, iffi, refl, ccontr, classical, conjE, disjE

$$\frac{A \quad B}{A \wedge B}$$
 conjl

Unsafe rules can turn a provable goal into an unprovable one

disjl1, disjl2, impE, iffD1, iffD2, notE

$$\frac{A}{A \lor B}$$
 disjl1

Safe rules preserve provability

conjl, impl, notl, iffi, refl, ccontr, classical, conjE, disjE

$$\frac{A \quad B}{A \wedge B}$$
 conjl

Unsafe rules can turn a provable goal into an unprovable one

disjl1, disjl2, impE, iffD1, iffD2, notE

$$\frac{A}{A \lor B} \text{ disjl1}$$

Apply safe rules before unsafe ones