COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Simon Winwood, Toby Murray, June Andronick, Gerwin Klein

Slide 1

Content

• Intro & motivation, getting started with Isabelle
• Foundations & Principles
 • Lambda Calculus
 • Higher Order Logic, natural deduction
 • Term rewriting
• Proof & Specification Techniques
 • Inductively defined sets, rule induction
 • Datatypes, recursion, induction
 • Calculational reasoning, mathematics style proofs
 • Hoare logic, proofs about programs

Slide 2

Last Time

• Introducing new Types
• Equations and Term Rewriting
• Confluence and Termination of reduction systems
• Term Rewriting in Isabelle

Slide 3

Exercises

• use typedef to define a new type v with exactly one element.
• define a constant u of type v
• show that every element of v is equal to u
• design a set of rules that turns formulas with \(\land, \lor, \rightarrow, \neg \)
 into disjunctive normal form
 (\(\neg \) disjunction of conjunctions with negation only directly on variables)
• prove those rules in Isabelle
• use simp only with these rules on \((\neg B \rightarrow C) \rightarrow A \rightarrow B \)

Slide 4
ISAR
A LANGUAGE FOR STRUCTURED PROOFS

Slide 5

Isar
apply scripts What about..

➔ unreadable ➔ Elegance?
➔ hard to maintain ➔ Explaining deeper insights?
➔ do not scale ➔ Large developments?

No structure. Isar!

Slide 6

A typical Isar proof

proof
 assume formula₀
 have formula₁ by simp
 ...
 have formulaₙ by blast
 show formulaₙ₊₁ by ...
qed

proves formula₀ ⇒ formulaₙ₊₁
(analogous to assumes/shows in lemma statements)

Slide 7

Isar core syntax

proof = proof [method] statement* qed
 | by method
method = (simp ...) | (blast ...) | (rule ...) | ...
statement = fix variables (\(A\))
 | assume proposition (\(\Rightarrow\))
 | [from name]* (have | show) proposition proof
 | next (separates subgoals)
proposition = [name:] formula

Slide 8
lemma "[A; B] ≤ A ∧ B"
proof (rule conjI)
 assume A: "A"
 from A show "A" by assumption
next
 assume B: "B"
 from B show "B" by assumption
qed

Slide 9

How do I know what to Assume and Show?

Look at the proof state!

lemma "[A; B] ≤ A ∧ B"
proof (rule conjI)
 ⇒ proof (prove) applies method to the stated goal
 ⇒ proof (state) applies a single rule that fits
 ⇒ proof (chain) does nothing to the goal

Slide 10

The Three Modes of Isar

→ [prove]: goal has been stated, proof needs to follow.
→ [state]: proof block has opened or subgoal has been proved.
 new from statement, goal statement or assumptions can follow.
→ [chain]: from statement has been made, goal statement needs to follow.

lemma "[A; B] ≤ A ∧ B" [prove]
proof (rule conjI) [state]
 assume A: "A" [state]
next [state] …

Slide 11

Have

Can be used to make intermediate steps.

Example:
lemma "(x :: nat) + 1 = 1 + x"
proof -
 have A: "x + 1 = Suc x" by simp
 have B: "1 + x = Suc x" by simp
 show "x + 1 = 1 + x" by (simp only: A B)
qed
Applying a Rewrite Rule

- $l \rightarrow r$ applicable to term $t[s]$ if there is substitution σ such that $\sigma l = s$
- Result: $t[\sigma r]$
- Equationally: $t[s] = t[\sigma r]$

Example:
Rule: $0 + n \rightarrow n$
Term: $a + (0 + (b + c))$
Substitution: $\sigma = \{ n \mapsto b + c \}$
Result: $a + (b + c)$

Conditional Term Rewriting

Rewrite rules can be conditional:

$$[P_1 \ldots P_n] \rightarrow l = r$$

is applicable to term $t[s]$ with σ if

- $\sigma l = s$ and
- $\sigma P_1, \ldots, \sigma P_n$ are provable by rewriting.
Rewriting with Assumptions

Last time: Isabelle uses assumptions in rewriting.
Can lead to non-termination.

Example:

```
lemma "f x = g x ∧ g x = f x ⇒ f x = 2"
```

```
simp use and simplify assumptions
(simp (no_asm)) ignore assumptions
(simp (no_asm_use)) simplify, but do not use assumptions
(simp (no_asm_simp)) use, but do not simplify assumptions
```

Preprocessing

Preprocessing (recursive) for maximal simplification power:

\[\neg A \rightarrow A = \text{False} \]
\[A \rightarrow B \rightarrow A \rightarrow B\]
\[A \land B \rightarrow A, B\]
\[\forall x. A x \rightarrow \forall x. A x\]
\[A \rightarrow A = \text{True}\]

Example:

\[(p \rightarrow q \land \neg r) \land s\]
\[p \rightarrow q = \text{True} \quad r = \text{False} \quad s = \text{True}\]
Congruence Rules

Congruence rules are about using context

Example: in P → Q we could use P to simplify terms in Q

For → hardwired (assumptions used in rewriting)
For other operators expressed with conditional rewriting.

Example: \[P = P'; P' \rightarrow Q = Q' \] ⇒ (P → Q) = (P' → Q')

Read: to simplify P → Q
→ first simplify P to P'
→ then simplify Q to Q' using P' as assumption
→ the result is P' → Q'

More Congruence

Sometimes useful, but not used automatically (slowdown):
\texttt{conj} \[(P = P'; P' \rightarrow Q = Q') \rightarrow (P
\land Q) = (P'
\land Q) \]

Context for if-then-else:
\texttt{if} \[\begin{array}{l}
[b = c; e \rightarrow x = w; e' \rightarrow y = v]\rightarrow \\
(\text{if } b \text{ then } x \text{ else } y) = (\text{if } c \text{ then } u \text{ else } v)
\end{array} \]

Prevent rewriting inside then-else (default):
\texttt{if_weak_cong} \[b = c \rightarrow (\text{if } b \text{ then } x \text{ else } y) = (\text{if } c \text{ then } x \text{ else } y)\]

→ declare own congruence rules with \texttt{[cong]} attribute
→ delete with \texttt{[cong del]}

Ordered rewriting

Problem: \(x + y \rightarrow y + x \) does not terminate

Solution: use permutative rules only if term becomes lexicographically smaller.

Example: \(b + a \sim a + b \) but not \(a + b \sim b + a \).

For types nat, int etc:
• \texttt{lemmas add_ac} sort any sum (+)
• \texttt{lemmas times_ac} sort any product (·)

Example: apply (simp add: add_ac) yields
\((b + c) + a \leadsto \cdots \leadsto a + (b + c) \)

AC Rules

Example for associative-commutative rules:

\textbf{Associative:} \(x \circ (y \circ z) = x \circ (y \circ z) \)
\textbf{Commutative:} \(x \circ y = y \circ x \)

These 2 rules alone get stuck too early (not confluent).

Example: \((z \circ x) \circ (y \circ v) \)
We want: \((z \circ x) \circ (y \circ v) = v \circ (x \circ (y \circ z)) \)
We get: \((z \circ x) \circ (y \circ v) = v \circ (y \circ (x \circ z)) \)
We need: \textbf{AC rule} \(x \circ (y \circ z) = y \circ (x \circ z) \)

If these 3 rules are present for an AC operator
Isabelle will order terms correctly
Back to Confluence

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.

Definition:
Let \(l_1 \rightarrow r_1 \) and \(l_2 \rightarrow r_2 \) be two rules with disjoint variables.
They form a critical pair if a non-variable subterm of \(l_1 \) unifies with \(l_2 \).

Example:
Rules:
1. \(f x \rightarrow a \)
2. \(g y \rightarrow b \)
3. \(f (g z) \rightarrow b \)

Critical pairs:
1. \((1) + (3)\) \(x \rightarrow g z \) \(a = \frac{(1)}{f g t} \rightarrow b \)
2. \((3) + (2)\) \(z \rightarrow y \) \(b = \frac{(3)}{f g t} \rightarrow b \)

Completion

\(f x \rightarrow a \) \(g y \rightarrow b \) \(f (g z) \rightarrow b \)

is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:
\((1) + (3) \) \(x \rightarrow g z \) \(a = \frac{(1)}{f g t} \rightarrow b \)
shows that \(a = b \) (because \(a \leftrightarrow b \)), so we add \(a \rightarrow b \) as a rule.

This is the main idea of the Knuth-Bendix completion algorithm.

DEMO: WALDMEISTER
We have learned today ...

- Isar
- Conditional term rewriting
- Congruence rules
- AC rules
- More on confluence