Content

- Intro & motivation, getting started with Isabelle
- Foundations & Principles
 - Lambda Calculus
 - Higher Order Logic, natural deduction
 - Term rewriting
- Proof & Specification Techniques
 - Inductively defined sets, rule induction
 - Datatypes, recursion, induction
 - Calculational reasoning, mathematics style proofs
 - Hoare logic, proofs about programs

Last Time

- Isar, structured proofs
- shows, assumes
- the three modes of Isar

BACK TO TERM REWRITING ...
Applying a Rewrite Rule

→ l → r applicable to term t[s]
 if there is substitution σ such that σ l = s
→ Result: t[σ r]
→ Equationally: t(s) = t(σ r)

Example:
Rule: 0 + n → n
Term: a + (0 + (b + c))
Substitution: σ = {n ↦ b + c}
Result: a + (b + c)

Conditional Term Rewriting

Rewrite rules can be conditional:
[Ps . . . Pn] → l = r
is applicable to term t[s] with σ if
→ σ l = s and
→ σ P1, . . . , σ Pn are provable by rewriting.

Rewriting with Assumptions

Last time: Isabelle uses assumptions in rewriting.

Can lead to non-termination.

Example:
lemma "f x = g x ∧ g x = f x =⇒ f x = 2"

simp use and simplify assumptions
(simp (no_asm)) ignore assumptions
(simp (no_asm_use)) simplify, but do not use assumptions
(simp (no_asm_simp)) use, but do not simplify assumptions

Preprocessing

Preprocessing (recursive) for maximal simplification power:

¬A =⇒ A = False
A → B =⇒ A =⇒ B
A ∧ B =⇒ A, B
∀x. A x =⇒ A ?x
A =⇒ A = True

Example:
(p → q ∧ ¬r) ∧ s

p =⇒ q = True r = False s = True
Case splitting with simp

\[P \text{ (if } A \text{ then } s \text{ else } t) = (A \rightarrow P \ s) \land (\neg A \rightarrow P \ t) \]

Automatic

\[P \text{ (case } c \text{ of } 0 \Rightarrow a | \text{Suc } n \Rightarrow b) \]
\[(c = 0 \rightarrow P \ a) \land (\forall n. c = \text{Suc } n \rightarrow P \ b) \]

Manually: apply \((\text{simp split: nat.split})\)

Similar for any data type \(t: \text{t.split}\)

Congruence Rules

Congruence rules are about using context

Example: in \(P \rightarrow Q\) we could use \(P\) to simplify terms in \(Q\)

For \(\rightarrow\) hardwired (assumptions used in rewriting)

For other operators expressed with conditional rewriting.

Example: \([P = P'; P' \Rightarrow Q = Q'] \Rightarrow (P \rightarrow Q) = (P' \rightarrow Q')\)

Read: to simplify \(P \rightarrow Q\)

\[\rightarrow \]

1. first simplify \(P\) to \(P'\)
2. then simplify \(Q\) to \(Q'\) using \(P'\) as assumption
3. the result is \(P' \rightarrow Q'\)

More Congruence

Sometimes useful, but not used automatically (slowdown):

\text{conjCong}:
\([P = P'; P' \Rightarrow Q = Q'] \Rightarrow (P \land Q) = (P' \land Q')\)

Context for if-then-else:

\text{ifCong}:
\([b = c; e \Rightarrow x = u; c \Rightarrow y = v] \Rightarrow (\text{if } b \text{ then } x \text{ else } y) = (\text{if } c \text{ then } u \text{ else } v)\)

Prevent rewriting inside then-else (default):

\text{ifWeakCong}:
\([b = c \Rightarrow (\text{if } b \text{ then } x \text{ else } y) = (\text{if } c \text{ then } x \text{ else } y)\)

\rightarrow declare own congruence rules with \([\text{cong}]\) attribute

\rightarrow delete with \([\text{cong del}]\)
Ordered rewriting

Problem: $x + y \rightarrow y + x$ does not terminate

Solution: use permutative rules only if term becomes lexicographically smaller.

Example: $b + a \sim a + b$ but not $a + b \sim b + a$.

For types nat, int etc:
- lemmas add_ac sort any sum (+)
- lemmas times_ac sort any product (*)

Example: apply (simp add: add_ac) yields $(b + c) + a \sim \cdots \sim a + (b + c)$

AC Rules

Example for associative-commutative rules:
- Associative: $(x \circ y) \circ z = x \circ (y \circ z)$
- Commutative: $x \circ y = y \circ x$

These 2 rules alone get stuck too early (not confluent).

Example: $(z \circ x) \circ (y \circ v)$
We want: $(z \circ x) \circ (y \circ v) = v \circ (x \circ (y \circ z))$
We get: $(z \circ x) \circ (y \circ v) = v \circ (y \circ (x \circ z))$
We need: AC rule $x \circ (y \circ z) = y \circ (x \circ z)$

If these 3 rules are present for an AC operator Isabelle will order terms correctly.

Back to Confluence

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.

Definition:
Let $l_1 \rightarrow r_1$ and $l_2 \rightarrow r_2$ be two rules with disjoint variables.
They form a critical pair if a non-variable subterm of l_1 unifies with l_2.

Example:
Rules: $(1)\ f\ x \rightarrow a\ (2)\ g\ y \rightarrow b\ (3)\ f\ (g\ z) \rightarrow b$
Critical pairs:
$(1)+(3)\ \{x \mapsto g\ z\}$ $a\ \frac{(1)\ a}{(1)\ b}$
$(3)+(2)\ \{z \mapsto y\}$ $b\ \frac{(3)\ b}{(2)\ b}$
Completion

(1) \(f \ x \rightarrow a \)
(2) \(g \ y \rightarrow b \)
(3) \(f \ (g \ z) \rightarrow b \)

is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

\((1)+(3)\) \(\{x \mapsto g \ z\} \)

shows that \(a = b\) (because \(a \xleftarrow{1} b\)), so we add \(a \rightarrow b\) as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

Orthogonal Rewriting Systems

Definitions:

A rule \(l \rightarrow r \) is left-linear if no variable occurs twice in \(l \).

A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

We have learned today ...

- Conditional term rewriting
- Congruence rules
- AC rules
- More on confluence