O • NICTA

COMP 4161 NICTA Advanced Course

Advanced Topics in Software Verification

Simon Winwood, Toby Murray, June Andronick, Gerwin Klein

Slide 1

Content

NICTA

- → Intro & motivation, getting started with Isabelle
- → Foundations & Principles
 - Lambda Calculus
 - Higher Order Logic, natural deduction
 - Term rewriting
- → Proof & Specification Techniques
 - Inductively defined sets, rule induction
 - Datatypes, recursion, induction
 - Calculational reasoning, mathematics style proofs
 - Hoare logic, proofs about programs

Last Time

- → Conditional rewriting
- → Rewriting with assumptions
- → Case splitting
- → Congruence rules
- → Permutative rewriting, AC rules

Slide 3

Back to Confluence

Last time: confluence in general is undecidable. But: confluence for terminating systems is decidable! Problem: overlapping lhs of rules.

Definition:

Let $l_1 \longrightarrow r_1$ and $l_2 \longrightarrow r_2$ be two rules with disjoint variables. They form a **critical pair** if a non-variable subterm of l_1 unifies with l_2 .

Example:

Rules: (1) $f x \longrightarrow a$ (2) $g y \longrightarrow b$ (3) $f (g z) \longrightarrow b$ Critical pairs:

(1)+(3)	$\{x \mapsto g \ z\}$	$a \stackrel{(1)}{\longleftarrow}$	f g t	$\stackrel{(3)}{\longrightarrow} b$
(3)+(2)	$\{z \mapsto y\}$	$b \xleftarrow{(3)}$	f g t	$\stackrel{(2)}{\longrightarrow} b$

Slide 4

Completion

NICTA

NICTA

(1) $f x \longrightarrow a$ (2) $g y \longrightarrow b$ (3) $f (g z) \longrightarrow b$ is not confluent

But it can be made confluent by adding rules! How: join all critical pairs

Slide 5

Example:

(1)+(3) $\{x \mapsto g z\}$ $a \stackrel{(1)}{\leftarrow} f g t \stackrel{(3)}{\longrightarrow} b$ shows that a = b (because $a \stackrel{\leftrightarrow}{\leftarrow} b$), so we add $a \longrightarrow b$ as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

Orthogonal Rewriting Systems

Definitions: A rule $l \rightarrow r$ is left-linear if no variable occurs twice in l. A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

Slide 7

THAT WAS TERM REWRITING

Slide 8

Slide 6

DEMO: WALDMEISTER

3

- → proof and qed
- → assume and show
- ➔ from and have
- → the three modes of Isar

Introduces new arbitrary but fixed variables (\sim parameters, \bigwedge)

obtain $v_1 \dots v_n$ where < prop > < proof >

Introduces new variables together with property

Slide 10

BUILDING UP SPECIFICATION TECHNIQUES: SETS

Slide 20

9

Bounded Quantifiers NICTA

- $\blacklozenge \ \forall x \in A. \ P \ x \equiv \forall x. \ x \in A \longrightarrow P \ x \\$
- $\ \, \Rightarrow \ \, \exists x \in A. \ \, P \ x \equiv \exists x. \ x \in A \land P \ x \\$
- → ball: $(\bigwedge x. x \in A \Longrightarrow P x) \Longrightarrow \forall x \in A. P x$
- → bspec: $\llbracket \forall x \in A. P x; x \in A \rrbracket \Longrightarrow P x$
- → bexl: $\llbracket P \ x; x \in A \rrbracket \Longrightarrow \exists x \in A. P \ x$
- → bexE: $[\exists x \in A. P x; \land x. [x \in A; P x]] \Longrightarrow Q] \Longrightarrow Q$

Demo: Sets