
COMP 4161
NICTA Advanced Course

Advanced Topics in Software Verification

Simon Winwood, Toby Murray, June Andronick, Gerwin Klein

−→ {}
Slide 1

Content

➜ Intro & motivation, getting started with Isabelle

➜ Foundations & Principles

• Lambda Calculus

• Higher Order Logic, natural deduction

• Term rewriting

➜ Proof & Specification Techniques

• Inductively defined sets, rule induction

• Datatypes, recursion, induction

• Calculational reasoning, mathematics style proofs

• Hoare logic, proofs about programs

Slide 2

1

Last Time

➜ Conditional rewriting

➜ Rewriting with assumptions

➜ Case splitting

➜ Congruence rules

➜ Permutative rewriting, AC rules

Slide 3

Back to Confluence

Last time: confluence in general is undecidable.
But: confluence for terminating systems is decidable!
Problem: overlapping lhs of rules.

Definition:
Let l1 −→ r1 and l2 −→ r2 be two rules with disjoint variables.

They form a critical pair if a non-variable subterm of l1 unifies with l2.

Example:
Rules: (1) f x −→ a (2) g y −→ b (3) f (g z) −→ b

Critical pairs:

(1)+(3) {x 7→ g z} a
(1)
←− f g t

(3)
−→ b

(3)+(2) {z 7→ y} b
(3)
←− f g t

(2)
−→ b

Slide 4

2



Completion

(1) f x −→ a (2) g y −→ b (3) f (g z) −→ b

is not confluent

But it can be made confluent by adding rules!

How: join all critical pairs

Example:

(1)+(3) {x 7→ g z} a
(1)
←− f g t

(3)
−→ b

shows that a = b (because a
∗

←→ b), so we add a −→ b as a rule

This is the main idea of the Knuth-Bendix completion algorithm.

Slide 5

DEMO: WALDMEISTER

Slide 6

3

Orthogonal Rewriting Systems

Definitions:
A rule l −→ r is left-linear if no variable occurs twice in l.
A rewrite system is left-linear if all rules are.

A system is orthogonal if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluent

Application: functional programming languages

Slide 7

THAT WAS TERM REWRITING

Slide 8

4



MORE ISAR

Slide 9

Last Time on Isar

➜ basic syntax

➜ proof and qed

➜ assume and show

➜ from and have

➜ the three modes of Isar

Slide 10

5

Backward and Forward

Backward reasoning: . . . have ”A ∧B” proof
➜ proof picks an intro rule automatically

➜ conclusion of rule must unify with A ∧ B

Forward reasoning: . . .

assume AB: ”A ∧B”
from AB have ”. . .” proof

➜ now proof picks an elim rule automatically

➜ triggered by from
➜ first assumption of rule must unify with AB

General case: from A1 . . . An have R proof
➜ first n assumptions of rule must unify with A1 . . . An

➜ conclusion of rule must unify with R

Slide 11

Fix and Obtain

fix v1 . . . vn

Introduces new arbitrary but fixed variables
(∼ parameters,

∧
)

obtain v1 . . . vn where <prop> <proof>

Introduces new variables together with property

Slide 12

6



DEMO

Slide 13

Fancy Abbreviations

this = the previous fact proved or assumed

then = from this

thus = then show

hence = then have

with A1 . . . An = from A1 . . . An this

?thesis = the last enclosing goal statement

Slide 14

7

Moreover and Ultimately

have X1: P1 . . . have P1 . . .

have X2: P2 . . . moreover have P2 . . .
...

...

have Xn: Pn . . . moreover have Pn . . .

from X1 . . .Xn show . . . ultimately show . . .

wastes lots of brain power

on names X1 . . .Xn

Slide 15

General Case Distinctions

show formula

proof -

have P1 ∨ P2 ∨ P3 <proof>

moreover { assume P1 . . . have ?thesis <proof> }

moreover { assume P2 . . . have ?thesis <proof> }

moreover { assume P3 . . . have ?thesis <proof> }

ultimately show ?thesis by blast

qed

{ . . . } is a proof block similar to proof ... qed

{ assume P1 . . . have P <proof> }
stands for P1 =⇒ P

Slide 16

8



Mixing proof styles

from . . .

have . . .

apply - make incoming facts assumptions

apply (. . . )
...

apply (. . . )

done

Slide 17

BUILDING UP SPECIFICATION TECHNIQUES: SETS

Slide 18

9

Sets in Isabelle

Type ’a set : sets over type ’a

➜ {}, {e1, . . . , en}, {x. P x}

➜ e ∈ A, A ⊆ B

➜ A ∪ B, A ∩ B, A − B, −A

➜
S

x ∈ A. B x,
T

x ∈ A. B x,
T

A,
S

A

➜ {i..j}

➜ insert :: α ⇒ α set ⇒ α set

➜ f ‘A ≡ {y. ∃x ∈ A. y = f x}

➜ . . .

Slide 19

Proofs about Sets

Natural deduction proofs:

➜ equalityI: [[A ⊆ B; B ⊆ A]] =⇒ A = B

➜ subsetI: (
V

x. x ∈ A =⇒ x ∈ B) =⇒ A ⊆ B

➜ . . . (see Tutorial)

Slide 20

10



Bounded Quantifiers

➜ ∀x ∈ A. P x ≡ ∀x. x ∈ A −→ P x

➜ ∃x ∈ A. P x ≡ ∃x. x ∈ A ∧ P x

➜ ballI: (
V

x. x ∈ A =⇒ P x) =⇒ ∀x ∈ A. P x

➜ bspec: [[∀x ∈ A. P x; x ∈ A]] =⇒ P x

➜ bexI: [[P x; x ∈ A]] =⇒ ∃x ∈ A. P x

➜ bexE: [[∃x ∈ A. P x;
V

x. [[x ∈ A; P x]] =⇒ Q]] =⇒ Q

Slide 21

DEMO: SETS

Slide 22

11


