COMP 416

 NICTA Advanced Course
Advanced Topics in Software Verification

Simon Winwood, Toby Murray, June Andronick, Gerwin Klein

Slide 1

NICTA
\rightarrow Intro \& motivation, getting started with Isabelle
\rightarrow Foundations \& Principles

- Lambda Calculus
- Higher Order Logic, natural deduction
- Term rewriting
\rightarrow Proof \& Specification Techniques
- Inductively defined sets, rule induction
- Datatypes, recursion, induction
- Calculational reasoning, mathematics style proofs
- Hoare logic, proofs about programs

Slide 3
Last Time
NICTA
\rightarrow Conditional rewriting
\rightarrow Rewriting with assumptions
\rightarrow Case splitting
\rightarrow Congruence rules
\rightarrow Permutative rewriting, AC rules

Back to Confluence

ICTA
Last time: confluence in general is undecidable
But: confluence for terminating systems is decidable!
Problem: overlapping Ihs of rules.

Definition:

Let $l_{1} \longrightarrow r_{1}$ and $l_{2} \longrightarrow r_{2}$ be two rules with disjoint variables.
They form a critical pair if a non-variable subterm of l_{1} unifies with l_{2}.

Example

$\begin{array}{llll}\text { Rules: } & \text { (1) } f x \longrightarrow a & \text { (2) } g y \longrightarrow b & \text { (3) } f(g z) \longrightarrow b\end{array}$
Critical pairs:

$$
\begin{array}{lll}
\text { (1)+(3) } & \{x \mapsto g z\} & a \stackrel{(1)}{\leftrightarrows} f g t \xrightarrow{(3)} b \\
(3)+(2) & \{z \mapsto y\} & b \stackrel{(3)}{\leftrightarrows} f g t \xrightarrow{(2)} b
\end{array}
$$

\qquad

$$
\begin{array}{lll}
\text { (1) } f x \longrightarrow a & \text { (2) } g y \longrightarrow b & \text { (3) } f(g z) \longrightarrow b
\end{array}
$$

But it can be made confluent by adding rules!
How: join all critical pairs

```
Example:
    (1)+(3) {x\mapstogz} }a\stackrel{(1)}{\stackrel{(1)}{f}gt\xrightarrow{}{(3)}b
shows that }a=b\mathrm{ (because }a\stackrel{*}{\longleftrightarrow}b\mathrm{ ), so we add }a\longrightarrowb\mathrm{ as a rule
```

This is the main idea of the Knuth-Bendix completion algorithm.

Slide 5

NICTA
is not confluent

Orthogonal Rewriting Systems

Definitions:
A rule $l \longrightarrow r$ is left-linear if no variable occurs twice in l.
A rewrite system is left-linear if all rules are.
A system is orthogonal if it is left-linear and has no critical pairs.

Orthogonal rewrite systems are confluen

Application: functional programming languages

Slide 7
\qquad

That was Term Rewriting
\qquad

More Isar

Slide 9

Backward and Forward

Backward reasoning: ... have " $A \wedge B$ " proof
\rightarrow proof picks an intro rule automatically
\rightarrow conclusion of rule must unify with $A \wedge B$

Forward reasoning:

assume AB : " $A \wedge B$ "
from $A B$ have ". .." proof
\rightarrow now proof picks an elim rule automatically
\rightarrow triggered by from
\rightarrow first assumption of rule must unify with $A B$

General case: from $A_{1} \ldots A_{n}$ have R proof
 \rightarrow first n assumptions of rule must unify with $A_{1} \ldots A_{n}$

\rightarrow conclusion of rule must unify with R

Slide 11

NICTA
fix $v_{1} \ldots v_{n}$
Introduces new arbitrary but fixed variables (\sim parameters, \wedge)
obtain $v_{1} \ldots v_{n}$ where <prop> <proof>
Introduces new variables together with property

Demo

Slide 13

Fancy Abbreviations
this $=$ the previous fact proved or assumed
then $=$ from this
thus $=$ then show
hence $=$ then have
with $A_{1} \ldots A_{n}=$ from $A_{1} \ldots A_{n}$ this
?thesis $=$ the last enclosing goal statement

Slide 14

Moreover and Ultimately

NICTA

have $X_{1}: P_{1} \ldots$	have $P_{1} \ldots$
have $X_{2}: P_{2} \ldots$	moreover have $P_{2} \ldots$
\vdots	\vdots
have $X_{n}: P_{n} \ldots$	moreover have $P_{n} \ldots$
from $X_{1} \ldots X_{n}$ show \ldots	ultimately show \ldots
wastes lots of brain power	
on names $X_{1} \ldots X_{n}$	

on names $X_{1} \ldots X_{n}$

NICTA
show formula
proof -
have $P_{1} \vee P_{2} \vee P_{3}$ <proof>
moreover \{ assume $P_{1} \ldots$ have ?thesis <proof> \}
moreover \{ assume $P_{2} \ldots$ have ?thesis <proof> \} moreover $\left\{\right.$ assume $P_{3} \ldots$ have ?thesis <proof> \} ultimately show ?thesis by blast
qed
$\{\ldots\}$ is a proof block similar to proof \ldots qed
$\left\{\right.$ assume $P_{1} \ldots$ have $\mathrm{P}<$ proof> \}
stands for $P_{1} \Longrightarrow P$
Slide 16

Mixing proof styles
from
have.
apply - make incoming facts assumptions
apply (...)
apply (...)
done

Slide 17

Sets in Isabelle

NICTA
Type 'a set: sets over type 'a
$\vec{\rightarrow}\left\},\left\{e_{1}, \ldots, e_{n}\right\}, \quad\{x . P x\}\right.$
$\rightarrow e \in A, \quad A \subseteq B$
$\rightarrow A \cup B, \quad A \cap B, \quad A-B, \quad-A$
$\rightarrow \bigcup x \in A . B x, \quad \cap x \in A . B x, \quad \cap A, \quad \bigcup A$
$\rightarrow\{i . . j\}$
\rightarrow insert :: $\alpha \Rightarrow \alpha$ set $\Rightarrow \alpha$ set
$\rightarrow f^{\star} A \equiv\{y . \exists x \in A . y=f x\}$
\rightarrow..

Proofs about Sets

NICTA
Natural deduction proofs
\rightarrow equalityl: $\llbracket A \subseteq B ; B \subseteq A \rrbracket \Longrightarrow A=B$
\rightarrow subsett: $(\wedge x . x \in A \Longrightarrow x \in B) \Longrightarrow A \subseteq B$
$\rightarrow \ldots$ (see Tutorial)

Building up Specification Techniques: Sets

Bounded Quantifiers

NICTA
$\longrightarrow \forall x \in A . P x \equiv \forall x . x \in A \longrightarrow P x$
$\rightarrow \exists x \in A . P x \equiv \exists x . x \in A \wedge P x$
\rightarrow balll: $(\bigwedge x . x \in A \Longrightarrow P x) \Longrightarrow \forall x \in A . P x$
\rightarrow bspec: $\llbracket \forall x \in A . P x ; x \in A \rrbracket \Longrightarrow P x$
\rightarrow bexl: $\llbracket P x ; x \in A \rrbracket \Longrightarrow \exists x \in A . P x$
\rightarrow bexE: $\llbracket \exists x \in A . P x ; \wedge x . \llbracket x \in A ; P x \rrbracket \Longrightarrow Q \rrbracket \Longrightarrow Q$

Slide 21

NICTA

