

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray

Slide 1

Binary Search (java.util.Arrays)

http://googleresearch.blogspot.com/2006/06/ extra-extra-read-all-about-it-nearly.html

Slide 2

Organisatorials

When Tue 9:00 – 10:30

Thu 9:00 – 10:30

Where Tue: Webster 256

Thu: ASBus 115

http://www.cse.unsw.edu.au/~cs4161/

Slide 3

About us

Members of the seL4 verification team

- → Functional correctness of a C microkernel Isabelle/HOL model ↔ Haskell model ↔ C code
- → 10 000 KLOC / 300 000 lines of proof script (!)
- → 25 person years / \$6 million

Read all about it: http://ertos.nicta.com.au/publications/

What you will learn

- → how to use a theorem prover
- → background, how it works
- → how to prove and specify
- → how to reason about programs

Health Warning

Theorem Proving is addictive

Slide 5

Content — Using Theorem Provers

[21^g,22,23]

→ Intro & motivation, getting started	Rough timeline [today]
→ Foundations & Principles	
Lambda Calculus, natural deduction	[2,3,4a]
Higher Order Logic	[5,6 ^b ,7]
Term rewriting	[8,9,10°]
→ Proof & Specification Techniques	
• Isar	[11,12 ^d]
 Inductively defined sets, rule induction 	[13 ^e ,15]
 Datatypes, recursion, induction 	[16,17 ^f ,18,19]
 Calculational reasoning, mathematics style proofs 	[20]

 $[^]a$ a1 out; b a1 due; c a2 out; d a2 due; e session break; f a3 out; g a3 due

· Hoare logic, proofs about programs

Slide 6

3

What you should do to have a chance of succeeding

- → attend lectures
- → try Isabelle early
- → redo all the demos alone
- → try the exercises/homework we give, when we do give some
- → DO NOT CHEAT
 - Assignments and exams are take-home. This does NOT mean you can work in groups. Each submission is personal.
 - For more info, see Plagiarism Policy^a

Slide 7

Credits

some material (in using-theorem-provers part) shamelessly stolen from

Tobias Nipkow, Larry Paulson, Markus Wenzel

David Basin, Burkhardt Wolff

Don't blame them, errors are mine

 $[^]a \; \texttt{http://www.cse.unsw.edu.au/people/studentoffice/policies/yellowform.html\#assign}$

to prove

(Merriam-Webster)

- → from Latin probare (test, approve, prove)
- → to learn or find out by experience (archaic)
- → to establish the existence, truth, or validity of (by evidence or logic) prove a theorem, the charges were never proved in court

pops up everywhere

- → politics (weapons of mass destruction)
- → courts (beyond reasonable doubt)
- → religion (god exists)
- → science (cold fusion works)

Slide 9

What is a mathematical proof?

In mathematics, a proof is a demonstration that, given certain axioms, some statement of interest is necessarily true. (Wikipedia)

Example: $\sqrt{2}$ is not rational.

Proof: assume there is $r \in \mathbb{Q}$ such that $r^2 = 2$.

Hence there are mutually prime p and q with $r = \frac{p}{q}$.

Thus $2q^2 = p^2$, i.e. p^2 is divisible by 2.

2 is prime, hence it also divides p, i.e. p = 2s.

Substituting this into $2q^2=p^2$ and dividing by 2 gives $q^2=2s^2$. Hence, q is also divisible by 2. Contradiction. Qed.

Slide 10

Nice, but..

- → still not rigorous enough for some
 - what are the rules?
 - · what are the axioms?
 - how big can the steps be?
 - what is obvious or trivial?
- → informal language, easy to get wrong
 → easy to miss something, easy to cheat

Theorem. A cat has nine tails.

Proof. No cat has eight tails. Since one cat has one more tail than no cat, it must have nine tails.

Slide 11

What is a formal proof?

A derivation in a formal calculus

Example: $A \wedge B \longrightarrow B \wedge A$ derivable in the following system

Proof:

1.	$\{A,B\} \vdash B$	(by assumption)
2.	$\{A,B\} \vdash A$	(by assumption)
3.	$\{A,B\} \vdash B \land A$	(by conjl with 1 and 2)
4.	$\{A \wedge B\} \vdash B \wedge A$	(by conjE with 3)
5.	$\{\} \vdash A \land B \longrightarrow B \land A$	(by impl with 4)

Slide 12

What is a theorem prover?

Implementation of a formal logic on a computer.

- → fully automated (propositional logic)
- → automated, but not necessarily terminating (first order logic)
- → with automation, but mainly interactive (higher order logic)
- → based on rules and axioms
- → can deliver proofs

There are other (algorithmic) verification tools:

- → model checking, static analysis, ...
- → usually do not deliver proofs

Slide 13

Why theorem proving?

- → Analysing systems/programs thoroughly
- → Finding design and specification errors early
- → High assurance (mathematical, machine checked proof)
- → it's not always easy
- → it's fun

Slide 14

Main theorem proving system for this course

sabelle

→ used here for applications, learning how to prove

Slide 15

What is Isabelle?

A generic interactive proof assistant

→ generic:

not specialised to one particular logic
(two large developments: HOL and ZF, will mainly use HOL)

→ interactive:

more than just yes/no, you can interactively guide the system

→ proof assistant:

helps to explore, find, and maintain proofs

Slide 16

7

Why Isabelle?

- → free
- → widely used systems
- → active development
- → high expressiveness and automation
- → reasonably easy to use
- → (and because we know it best ;-))

Slide 17

If I prove it on the computer, it is correct, right?

Slide 18

If I prove it on the computer, it is correct, right?

No, because:

- ① hardware could be faulty
- 2 operating system could be faulty
- 3 implementation runtime system could be faulty
- @ compiler could be faulty
- ⑤ implementation could be faulty
- 6 logic could be inconsistent
- ① theorem could mean something else

Slide 19

If I prove it on the computer, it is correct, right?

No, but:

probability for

- → OS and H/W issues reduced by using different systems
- → runtime/compiler bugs reduced by using different compilers
- → faulty implementation reduced by right architecture
- → inconsistent logic reduced by implementing and analysing it
- → wrong theorem reduced by expressive/intuitive logics

No guarantees, but assurance immensly higher than manual proof

Slide 20

9

If I prove it on the computer, it is correct, right?

Soundness architectures

careful implementation PVS

LCF approach, small proof kernel HOL4

Isabelle

explicit proofs + proof checker Coq

Twelf

Isabelle HOL4

Slide 21

Meta Logic

Meta language:

The language used to talk about another language.

Examples:

English in a Spanish class, English in an English class

Meta logic:

The logic used to formalize another logic

Example:

Mathematics used to formalize derivations in formal logic

Slide 22

Meta Logic – Example

Formulae: $F ::= V \mid F \longrightarrow F \mid F \wedge F \mid False$

Syntax: V := [A - Z]

Derivable: $S \vdash X$ X a formula, S a set of formulae

logic / meta logic

 $\frac{X \in S}{S \vdash X} \qquad \frac{S \cup \{X\} \vdash Y}{S \vdash X \longrightarrow Y}$

 $\frac{S \vdash X \quad S \vdash Y}{S \vdash X \land Y} \qquad \frac{S \cup \{X,Y\} \vdash Z}{S \cup \{X \land Y\} \vdash Z}$

Slide 23

Isabelle's Meta Logic

NICTA

 $\wedge \implies \lambda$

Λ

Syntax: $\bigwedge x. F$ (F another meta level formula)

in ASCII: !!x. F

- → universal quantifier on the meta level
- → used to denote parameters
- → example and more later

Slide 25

 \Longrightarrow

(A, B other meta level formulae)

Syntax: $A \Longrightarrow B$ in ASCII: $A \Longrightarrow B$

Binds to the right:

$$A \Longrightarrow B \Longrightarrow C = A \Longrightarrow (B \Longrightarrow C)$$

Abbreviation:

$$[\![A;B]\!] \Longrightarrow C = A \Longrightarrow B \Longrightarrow C$$

- ightharpoonup read: A and B implies C
- → used to write down rules, theorems, and proof states

Slide 26

Example: a theorem

mathematics: if x < 0 and y < 0, then x + y < 0

formal logic: $\vdash x < 0 \land y < 0 \longrightarrow x + y < 0$ variation: $x < 0; y < 0 \vdash x + y < 0$

variation: lemma

assumes "x < 0" and "y < 0" shows "x + y < 0"

Slide 27

Example: a rule

logic: $\frac{X \quad Y}{X \wedge Y}$

Isabelle: $[X;Y] \Longrightarrow X \wedge Y$

Example: a rule with nested implication

logic:

 $\begin{array}{cccc}
 & \vdots & \vdots \\
 & \vdots & \vdots \\
 & Z & Z
\end{array}$

 $\frac{S \cup \{X\} \vdash Z \quad S \cup \{Y\} \vdash Z}{S \cup \{X \lor Y\} \vdash Z}$

Isabelle:

variation:

 $[\![X\vee Y;X\Longrightarrow Z;Y\Longrightarrow Z]\!]\Longrightarrow Z$

Slide 29

λ

O • NICTA

in ASCII: %x. F

- → lambda abstraction
- → used for functions in object logics
- → used to encode bound variables in object logics
- → more about this in the next lecture

Slide 30

ENOUGH THEORY! GETTING STARTED WITH ISABELLE

Slide 31

System Architecture

Proof General - user interface

HOL, ZF - object-logics

Isabelle - generic, interactive theorem prover

Standard ML - logic implemented as ADT

User can access all layers!

Slide 32

15

System Requirements

- → Linux, Windows, FreeBSD, MacOS X or Solaris
- → Standard ML (PolyML fastest, SML/NJ supports more platforms)
- → Emacs (for ProofGeneral) or Java (for jEdit)

Premade packages for Linux, Mac, and Windows + info on:

http://mirror.cse.unsw.edu.au/pub/isabelle/download.html

Slide 33

Documentation

Available from http://isabelle.in.tum.de

- → Learning Isabelle
 - Tutorial on Isabelle/HOL (LNCS 2283)
 - · Tutorial on Isar
 - · Tutorial on Locales
- → Reference Manuals
 - Isabelle/Isar Reference Manual
 - Isabelle Reference Manual
 - Isabelle System Manual
- → Reference Manuals for Object-Logics

Slide 34

ProofGeneral

- → User interface for Isabelle
- → Runs under XEmacs or Emacs
- → Isabelle process in background

Interaction via

- → Basic editing in XEmacs (with highlighting etc)
- → Buttons (tool bar)
- → Key bindings
- → ProofGeneral Menu (lots of options, try them)

Slide 35

X-Symbol Cheat Sheet

Input of funny symbols in ProofGeneral

- → via menu ("X-Symbol")
- → via ASCII encoding (similar to LaTeX): \<and>, \<or>, ...
- → via abbreviation: /\, \/, -->, ...
- → via *rotate*: 1 C-. = λ (cycles through variations of letter)

	A	3	λ	Г	\wedge	V	\longrightarrow	\Rightarrow
1	\ <forall></forall>	\ <exists></exists>	\ <lambda></lambda>	\ <not></not>	/\	\/	>	=>
2	ALL	EX	olo	~	&			

- converted to X-Symbol
 stays ASCII

Slide 36

DEMO

Slide 37

Exercises

- → Download and install Isabelle from
 http://mirror.cse.unsw.edu.au/pub/isabelle/
- → Switch on X-Symbol in ProofGeneral
- → Step through the demo files from the lecture web page
- → Write your own theory file, look at some theorems in the library, try 'find theorem'
- → How many theorems can help you if you need to prove something like "Suc(Suc x))"?
- → What is the name of the theorem for associativity of addition of natural numbers in the library?