

COMP 4161

NICTA Advanced Course

Advanced Topics in Software Verification

Gerwin Klein, June Andronick, Toby Murray

Exercises for last time

- → Download and install Isabelle from
 - http://mirror.cse.unsw.edu.au/pub/isabelle/
- → Switch on X-Symbol in ProofGeneral
- → Step through the demo files from the lecture web page
- → Write your own theory file, look at some theorems in the library, try 'find theorem'
- → How many theorems can help you if you need to prove something like "Suc(Suc x))"?
- → What is the name of the theorem for associativity of addition of natural numbers in the library?

Content

	Rough timeline
→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
 Lambda Calculus, natural deduction 	[2,3,4 ^a]
Higher Order Logic	$[5,6^b,7]$
Term rewriting	[8,9,10 ^c]
→ Proof & Specification Techniques	
• Isar	$[11,12^d]$
 Inductively defined sets, rule induction 	[13 ^e ,15]
 Datatypes, recursion, induction 	[16,17 ^f ,18,19]
 Calculational reasoning, mathematics style proofs 	[20]
 Hoare logic, proofs about programs 	[21 ^g ,22,23]

 $[^]a$ a1 out; b a1 due; c a2 out; d a2 due; e session break; f a3 out; g a3 due

λ -calculus

Alonzo Church

- → lived 1903–1995
- → supervised people like Alan Turing, Stephen Kleene
- → famous for Church-Turing thesis, lambda calculus, first undecidability results
- \rightarrow invented λ calculus in 1930's

λ -calculus

- → originally meant as foundation of mathematics
- → important applications in theoretical computer science
- → foundation of computability and functional programming

untyped λ -calculus

- → turing complete model of computation
- → a simple way of writing down functions

Basic intuition:

instead of
$$f(x) = x + 5$$

instead of
$$f(x) = x + 5$$
 write $f = \lambda x. \ x + 5$

$$\lambda x. x + 5$$

- → a term
- → a nameless function
- → that adds 5 to its parameter

Function Application

For applying arguments to functions

instead of
$$f(a)$$

write
$$f a$$

Example:
$$(\lambda x. \ x+5) \ a$$

Evaluating: in $(\lambda x. t)$ a replace x by a in t

(computation!)

Example: $(\lambda x. \ x+5) \ (a+b)$ evaluates to (a+b)+5

THAT'S IT!

Now Formal

Syntax

Terms:

$$t ::= v \mid c \mid (t \ t) \mid (\lambda x. \ t)$$

$$v, x \in V, \quad c \in C, \quad V, C \text{ sets of names}$$

- $\rightarrow v, x$ variables
- $\rightarrow c$ constants
- → $(t\ t)$ application → $(\lambda x.\ t)$ abstraction

Conventions

- → leave out parentheses where possible
- \rightarrow list variables instead of multiple λ

Example: instead of $(\lambda y. (\lambda x. (x y)))$ write $\lambda y x. x y$

Rules:

- \rightarrow list variables: $\lambda x. (\lambda y. t) = \lambda x y. t$
- \rightarrow application binds to the left: $x \ y \ z = (x \ y) \ z \neq x \ (y \ z)$
- \rightarrow abstraction binds to the right: $\lambda x. \ x \ y = \lambda x. \ (x \ y) \neq (\lambda x. \ x) \ y$
- → leave out outermost parentheses

Getting used to the Syntax

Example:

$$\lambda x \ y \ z. \ x \ z \ (y \ z) =$$
 $\lambda x \ y \ z. \ (x \ z) \ (y \ z) =$
 $\lambda x \ y \ z. \ ((x \ z) \ (y \ z)) =$
 $\lambda x. \ \lambda y. \ \lambda z. \ ((x \ z) \ (y \ z)) =$
 $(\lambda x. \ (\lambda y. \ (\lambda z. \ ((x \ z) \ (y \ z)))))$

Computation

Intuition: replace parameter by argument

this is called β -reduction

Example

$$(\lambda x \ y. \ f \ (y \ x)) \ 5 \ (\lambda x. \ x) \longrightarrow_{\beta}$$
$$(\lambda y. \ f \ (y \ 5)) \ (\lambda x. \ x) \longrightarrow_{\beta}$$
$$f \ ((\lambda x. \ x) \ 5) \longrightarrow_{\beta}$$
$$f \ 5$$

Defining Computation

eta reduction:

$$(\lambda x. s) t \longrightarrow_{\beta} s[x \leftarrow t]$$

$$s \longrightarrow_{\beta} s' \Longrightarrow (s t) \longrightarrow_{\beta} (s' t)$$

$$t \longrightarrow_{\beta} t' \Longrightarrow (s t) \longrightarrow_{\beta} (s t')$$

$$s \longrightarrow_{\beta} s' \Longrightarrow (\lambda x. s) \longrightarrow_{\beta} (\lambda x. s')$$

Still to do: define $s[x \leftarrow t]$

Defining Substitution

Easy concept. Small problem: variable capture.

Example: $(\lambda x. \ x \ z)[z \leftarrow x]$

We do **not** want: $(\lambda x. x x)$ as result.

What do we want?

In $(\lambda y.\ y\ z)\ [z \leftarrow x] = (\lambda y.\ y\ x)$ there would be no problem.

So, solution is: rename bound variables.

Free Variables

Bound variables: in $(\lambda x. t)$, x is a bound variable.

Free variables FV of a term:

$$FV (x) = \{x\}$$

$$FV (c) = \{\}$$

$$FV (s t) = FV(s) \cup FV(t)$$

$$FV (\lambda x. t) = FV(t) \setminus \{x\}$$

Example:
$$FV(-\lambda x. (\lambda y. (\lambda x. x) y) y x -) = \{y\}$$

Term t is called **closed** if $FV(t) = \{\}$

Our problematic substitution example, $(\lambda x.\ x\ z)[z\leftarrow x]$, is problematic because the bound variable x is a free variable of the replacement term "x".

Substitution

$$x [x \leftarrow t] = t$$

$$y [x \leftarrow t] = y$$

$$c \left[x \leftarrow t \right] = c$$

$$(s_1 \ s_2) \ [x \leftarrow t] = (s_1[x \leftarrow t] \ s_2[x \leftarrow t])$$

$$(\lambda x.\ s)\ [x \leftarrow t] = (\lambda x.\ s)$$

$$(\lambda y.\ s)\ [x \leftarrow t] = (\lambda y.\ s[x \leftarrow t])$$

$$(\lambda y.\ s)\ [x \leftarrow t] = (\lambda z.\ s[y \leftarrow z][x \leftarrow t]) \quad \text{if } x \neq y$$

if
$$x \neq y$$
 and $y \notin FV(t)$

if $x \neq y$

$$\text{if } x \neq y \\ \text{and } z \notin FV(t) \cup FV(s)$$

Substitution Example

$$(x (\lambda x. x) (\lambda y. z x))[x \leftarrow y]$$

$$= (x[x \leftarrow y]) ((\lambda x. x)[x \leftarrow y]) ((\lambda y. z x)[x \leftarrow y])$$

$$= y (\lambda x. x) (\lambda y'. z y)$$

α Conversion

Bound names are irrelevant:

 $\lambda x. \ x$ and $\lambda y. \ y$ denote the same function.

α conversion:

 $s =_{\alpha} t$ means s = t up to renaming of bound variables.

$$s =_{\alpha} t \quad \text{iff} \quad s \longrightarrow_{\alpha}^{*} t$$
 ($\longrightarrow_{\alpha}^{*}$ = transitive, reflexive closure of \longrightarrow_{α} = multiple steps)

Equality in Isabelle is equality modulo α conversion:

if $s =_{\alpha} t$ then s and t are syntactically equal.

Examples:

$$x (\lambda x y. x y)$$

$$=_{\alpha} x (\lambda y x. y x)$$

$$=_{\alpha} x (\lambda z y. z y)$$

$$\neq_{\alpha} z (\lambda z y. z y)$$

$$\neq_{\alpha} x (\lambda x x. x x)$$

Back to β

We have defined β reduction: \longrightarrow_{β}

Some notation and concepts:

- $\rightarrow \beta$ conversion: $s =_{\beta} t$ iff $\exists n. \ s \longrightarrow_{\beta}^{*} n \land t \longrightarrow_{\beta}^{*} n$
- \rightarrow t is **reducible** if there is an s such that $t \longrightarrow_{\beta} s$
- \rightarrow ($\lambda x.\ s$) t is called a **redex** (reducible expression)
- → t is reducible iff it contains a redex
- \rightarrow if it is not reducible, t is in **normal form**

Does every λ term have a normal form?

No!

Example:

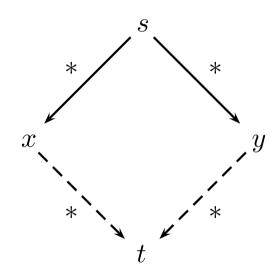
$$(\lambda x. \ x \ x) \ (\lambda x. \ x \ x) \longrightarrow_{\beta}$$
$$(\lambda x. \ x \ x) \ (\lambda x. \ x \ x) \longrightarrow_{\beta}$$
$$(\lambda x. \ x \ x) \ (\lambda x. \ x \ x) \longrightarrow_{\beta} \dots$$

(but:
$$(\lambda x \ y. \ y) \ ((\lambda x. \ x \ x) \ (\lambda x. \ x \ x)) \longrightarrow_{\beta} \ \lambda y. \ y)$$

λ calculus is not terminating

β reduction is confluent

Confluence: $s \longrightarrow_{\beta}^* x \land s \longrightarrow_{\beta}^* y \Longrightarrow \exists t. \ x \longrightarrow_{\beta}^* t \land y \longrightarrow_{\beta}^* t$



Order of reduction does not matter for result Normal forms in λ calculus are unique

β reduction is confluent

Example:

$$(\lambda x \ y. \ y) \ ((\lambda x. \ x \ x) \ a) \longrightarrow_{\beta} (\lambda x \ y. \ y) \ (a \ a) \longrightarrow_{\beta} \lambda y. \ y$$
$$(\lambda x \ y. \ y) \ ((\lambda x. \ x \ x) \ a) \longrightarrow_{\beta} \lambda y. \ y$$

η Conversion

Another case of trivially equal functions: $t = (\lambda x. t x)$

Example:
$$(\lambda x. f x) (\lambda y. g y) \longrightarrow_{\eta} (\lambda x. f x) g \longrightarrow_{\eta} f g$$

- \rightarrow η reduction is confluent and terminating.
- \rightarrow $\longrightarrow_{\beta\eta}$ is confluent.
 - $\longrightarrow_{\beta\eta}$ means \longrightarrow_{β} and \longrightarrow_{η} steps are both allowed.
- \rightarrow Equality in Isabelle is also modulo η conversion.

Equality in Isabelle is modulo α , β , and η conversion.

We will see later why that is possible.

λ calculus is very expressive, you can encode:

- → logic, set theory
- → turing machines, functional programs, etc.

Examples:

true
$$\equiv \lambda x \ y. \ x$$
 if true $x \ y \longrightarrow_{\beta}^* x$ false $\equiv \lambda x \ y. \ y$ if false $x \ y \longrightarrow_{\beta}^* y$ if $\equiv \lambda z \ x \ y. \ z \ x \ y$

Now, not, and, or, etc is easy:

```
\begin{array}{l} \operatorname{not} \equiv \lambda x. \ \operatorname{if} \ x \ \operatorname{false} \ \operatorname{true} \\ \operatorname{and} \equiv \lambda x \ y. \ \operatorname{if} \ x \ y \ \operatorname{false} \\ \operatorname{or} \ \equiv \lambda x \ y. \ \operatorname{if} \ x \ \operatorname{true} \ y \end{array}
```

More Examples

Encoding natural numbers (Church Numerals)

$$0 \equiv \lambda f \ x. \ x$$

$$1 \equiv \lambda f \ x. \ f \ x$$

$$2 \equiv \lambda f \ x. \ f \ (f \ x)$$

$$3 \equiv \lambda f \ x. \ f \ (f \ (f \ x))$$

Numeral n takes arguments f and x, applies f n-times to x.

$$\begin{array}{ll} \texttt{iszero} \equiv \lambda n. \; n \; (\lambda x. \; \texttt{false}) \; \texttt{true} \\ \\ \texttt{succ} & \equiv \lambda n \; f \; x. \; f \; (n \; f \; x) \\ \\ \texttt{add} & \equiv \lambda m \; n. \; \lambda f \; x. \; m \; f \; (n \; f \; x) \end{array}$$

Fix Points

$$(\lambda x f. f (x x f)) (\lambda x f. f (x x f)) t \longrightarrow_{\beta}$$

$$(\lambda f. f ((\lambda x f. f (x x f)) (\lambda x f. f (x x f)) f)) t \longrightarrow_{\beta}$$

$$t ((\lambda x f. f (x x f)) (\lambda x f. f (x x f)) t)$$

$$\mu = (\lambda x f. \ f \ (x \ x \ f)) \ (\lambda x f. \ f \ (x \ x \ f))$$

$$\mu \ t \longrightarrow_{\beta} t \ (\mu \ t) \longrightarrow_{\beta} t \ (t \ (\mu \ t)) \longrightarrow_{\beta} t \ (t \ (\mu \ t)) \longrightarrow_{\beta} \dots$$

 $(\lambda x f. \ f \ (x \ x \ f)) \ (\lambda x f. \ f \ (x \ x \ f))$ is Turing's fix point operator

Nice, but ...

As a mathematical foundation, λ does not work. It is inconsistent.

- → Frege (Predicate Logic, ~ 1879): allows arbitrary quantification over predicates
- \rightarrow Russell (1901): Paradox $R \equiv \{X | X \notin X\}$

and get

- → Whitehead & Russell (Principia Mathematica, 1910-1913): Fix the problem
- \rightarrow Church (1930): λ calculus as logic, true, false, \wedge , ... as λ terms

with
$$\{x|\ P\ x\} \equiv \lambda x.\ P\ x$$
 $x\in M\equiv M\ x$ Problem: you can write $R\equiv \lambda x.\ {\rm not}\ (x\ x)$

 $(R R) =_{\beta} \operatorname{not} (R R)$

ISABELLE DEMO

We have learned so far...

- $\rightarrow \lambda$ calculus syntax
- → free variables, substitution
- $\rightarrow \beta$ reduction
- \rightarrow α and η conversion
- \rightarrow β reduction is confluent
- \rightarrow λ calculus is very expressive (turing complete)
- $\rightarrow \lambda$ calculus is inconsistent

Exercises

- \rightarrow Reduce $(\lambda x.\ y\ (\lambda v.\ x\ v))\ (\lambda y.\ v\ y)$ to $\beta\eta$ normal form.
- → Find an encoding for function fs, sn, and pair such that fs $(pair\ a\ b) =_{\beta} a$ and sn $(pair\ a\ b) =_{\beta} b$.
- \Rightarrow (harder) Find an encoding of list objects, i.e. for the function cons and nil. Then find an encoding for map (that is, map $f[x_1,\ldots,x_n]=[fx_1,\ldots,fx_n]$), and for foldl (that is, foldl $fi[x_1,\ldots,x_n]=fx_1(fx_2(fx_3(\ldots(fx_ni)))\ldots)$)